mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-13 17:32:40 +01:00
DroidFish: Updated stockfish engine to version 2.2.
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@@ -19,36 +19,41 @@
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "search.h"
|
||||
#include "thread.h"
|
||||
#include "ucioption.h"
|
||||
|
||||
ThreadsManager Threads; // Global object definition
|
||||
using namespace Search;
|
||||
|
||||
ThreadsManager Threads; // Global object
|
||||
|
||||
namespace { extern "C" {
|
||||
|
||||
// start_routine() is the C function which is called when a new thread
|
||||
// is launched. It simply calls idle_loop() with the supplied threadID.
|
||||
// There are two versions of this function; one for POSIX threads and
|
||||
// one for Windows threads.
|
||||
// is launched. It simply calls idle_loop() of the supplied thread. The first
|
||||
// and last thread are special. First one is the main search thread while the
|
||||
// last one mimics a timer, they run in main_loop() and timer_loop().
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
DWORD WINAPI start_routine(LPVOID thread) {
|
||||
#else
|
||||
void* start_routine(void* thread) {
|
||||
#endif
|
||||
|
||||
DWORD WINAPI start_routine(LPVOID threadID) {
|
||||
Thread* th = (Thread*)thread;
|
||||
|
||||
if (th->threadID == 0)
|
||||
th->main_loop();
|
||||
|
||||
else if (th->threadID == MAX_THREADS)
|
||||
th->timer_loop();
|
||||
|
||||
else
|
||||
th->idle_loop(NULL);
|
||||
|
||||
Threads.idle_loop(*(int*)threadID, NULL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void* start_routine(void* threadID) {
|
||||
|
||||
Threads.idle_loop(*(int*)threadID, NULL);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
} }
|
||||
|
||||
|
||||
@@ -63,15 +68,15 @@ void Thread::wake_up() {
|
||||
}
|
||||
|
||||
|
||||
// cutoff_occurred() checks whether a beta cutoff has occurred in
|
||||
// the thread's currently active split point, or in some ancestor of
|
||||
// the current split point.
|
||||
// cutoff_occurred() checks whether a beta cutoff has occurred in the current
|
||||
// active split point, or in some ancestor of the split point.
|
||||
|
||||
bool Thread::cutoff_occurred() const {
|
||||
|
||||
for (SplitPoint* sp = splitPoint; sp; sp = sp->parent)
|
||||
if (sp->is_betaCutoff)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
@@ -85,7 +90,7 @@ bool Thread::cutoff_occurred() const {
|
||||
|
||||
bool Thread::is_available_to(int master) const {
|
||||
|
||||
if (state != AVAILABLE)
|
||||
if (is_searching)
|
||||
return false;
|
||||
|
||||
// Make a local copy to be sure doesn't become zero under our feet while
|
||||
@@ -102,16 +107,41 @@ bool Thread::is_available_to(int master) const {
|
||||
}
|
||||
|
||||
|
||||
// read_uci_options() updates number of active threads and other internal
|
||||
// parameters according to the UCI options values. It is called before
|
||||
// to start a new search.
|
||||
// read_uci_options() updates number of active threads and other parameters
|
||||
// according to the UCI options values. It is called before to start a new search.
|
||||
|
||||
void ThreadsManager::read_uci_options() {
|
||||
|
||||
maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value<int>();
|
||||
minimumSplitDepth = Options["Minimum Split Depth"].value<int>() * ONE_PLY;
|
||||
useSleepingThreads = Options["Use Sleeping Threads"].value<bool>();
|
||||
activeThreads = Options["Threads"].value<int>();
|
||||
maxThreadsPerSplitPoint = Options["Max Threads per Split Point"];
|
||||
minimumSplitDepth = Options["Min Split Depth"] * ONE_PLY;
|
||||
useSleepingThreads = Options["Use Sleeping Threads"];
|
||||
|
||||
set_size(Options["Threads"]);
|
||||
}
|
||||
|
||||
|
||||
// set_size() changes the number of active threads and raises do_sleep flag for
|
||||
// all the unused threads that will go immediately to sleep.
|
||||
|
||||
void ThreadsManager::set_size(int cnt) {
|
||||
|
||||
assert(cnt > 0 && cnt <= MAX_THREADS);
|
||||
|
||||
activeThreads = cnt;
|
||||
|
||||
for (int i = 1; i < MAX_THREADS; i++) // Ignore main thread
|
||||
if (i < activeThreads)
|
||||
{
|
||||
// Dynamically allocate pawn and material hash tables according to the
|
||||
// number of active threads. This avoids preallocating memory for all
|
||||
// possible threads if only few are used.
|
||||
threads[i].pawnTable.init();
|
||||
threads[i].materialTable.init();
|
||||
|
||||
threads[i].do_sleep = false;
|
||||
}
|
||||
else
|
||||
threads[i].do_sleep = true;
|
||||
}
|
||||
|
||||
|
||||
@@ -120,22 +150,12 @@ void ThreadsManager::read_uci_options() {
|
||||
|
||||
void ThreadsManager::init() {
|
||||
|
||||
int threadID[MAX_THREADS];
|
||||
// Initialize sleep condition and lock used by thread manager
|
||||
cond_init(&sleepCond);
|
||||
lock_init(&threadsLock);
|
||||
|
||||
// This flag is needed to properly end the threads when program exits
|
||||
allThreadsShouldExit = false;
|
||||
|
||||
// Threads will sent to sleep as soon as created, only main thread is kept alive
|
||||
activeThreads = 1;
|
||||
threads[0].state = Thread::SEARCHING;
|
||||
|
||||
// Allocate pawn and material hash tables for main thread
|
||||
init_hash_tables();
|
||||
|
||||
lock_init(&mpLock);
|
||||
|
||||
// Initialize thread and split point locks
|
||||
for (int i = 0; i < MAX_THREADS; i++)
|
||||
// Initialize thread's sleep conditions and split point locks
|
||||
for (int i = 0; i <= MAX_THREADS; i++)
|
||||
{
|
||||
lock_init(&threads[i].sleepLock);
|
||||
cond_init(&threads[i].sleepCond);
|
||||
@@ -144,48 +164,51 @@ void ThreadsManager::init() {
|
||||
lock_init(&(threads[i].splitPoints[j].lock));
|
||||
}
|
||||
|
||||
// Create and startup all the threads but the main that is already running
|
||||
for (int i = 1; i < MAX_THREADS; i++)
|
||||
// Allocate main thread tables to call evaluate() also when not searching
|
||||
threads[0].pawnTable.init();
|
||||
threads[0].materialTable.init();
|
||||
|
||||
// Create and launch all the threads, threads will go immediately to sleep
|
||||
for (int i = 0; i <= MAX_THREADS; i++)
|
||||
{
|
||||
threads[i].state = Thread::INITIALIZING;
|
||||
threadID[i] = i;
|
||||
threads[i].is_searching = false;
|
||||
threads[i].do_sleep = true;
|
||||
threads[i].threadID = i;
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
bool ok = (CreateThread(NULL, 0, start_routine, (LPVOID)&threadID[i], 0, NULL) != NULL);
|
||||
threads[i].handle = CreateThread(NULL, 0, start_routine, &threads[i], 0, NULL);
|
||||
bool ok = (threads[i].handle != NULL);
|
||||
#else
|
||||
pthread_t pthreadID;
|
||||
bool ok = (pthread_create(&pthreadID, NULL, start_routine, (void*)&threadID[i]) == 0);
|
||||
pthread_detach(pthreadID);
|
||||
bool ok = !pthread_create(&threads[i].handle, NULL, start_routine, &threads[i]);
|
||||
#endif
|
||||
|
||||
if (!ok)
|
||||
{
|
||||
std::cout << "Failed to create thread number " << i << std::endl;
|
||||
std::cerr << "Failed to create thread number " << i << std::endl;
|
||||
::exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// Wait until the thread has finished launching and is gone to sleep
|
||||
while (threads[i].state == Thread::INITIALIZING) {}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// exit() is called to cleanly exit the threads when the program finishes
|
||||
// exit() is called to cleanly terminate the threads when the program finishes
|
||||
|
||||
void ThreadsManager::exit() {
|
||||
|
||||
// Force the woken up threads to exit idle_loop() and hence terminate
|
||||
allThreadsShouldExit = true;
|
||||
|
||||
for (int i = 0; i < MAX_THREADS; i++)
|
||||
for (int i = 0; i <= MAX_THREADS; i++)
|
||||
{
|
||||
// Wake up all the threads and waits for termination
|
||||
if (i != 0)
|
||||
{
|
||||
threads[i].wake_up();
|
||||
while (threads[i].state != Thread::TERMINATED) {}
|
||||
}
|
||||
threads[i].do_terminate = true; // Search must be already finished
|
||||
threads[i].wake_up();
|
||||
|
||||
// Now we can safely destroy the locks and wait conditions
|
||||
// Wait for thread termination
|
||||
#if defined(_MSC_VER)
|
||||
WaitForSingleObject(threads[i].handle, 0);
|
||||
CloseHandle(threads[i].handle);
|
||||
#else
|
||||
pthread_join(threads[i].handle, NULL);
|
||||
#endif
|
||||
|
||||
// Now we can safely destroy associated locks and wait conditions
|
||||
lock_destroy(&threads[i].sleepLock);
|
||||
cond_destroy(&threads[i].sleepCond);
|
||||
|
||||
@@ -193,58 +216,56 @@ void ThreadsManager::exit() {
|
||||
lock_destroy(&(threads[i].splitPoints[j].lock));
|
||||
}
|
||||
|
||||
lock_destroy(&mpLock);
|
||||
}
|
||||
|
||||
|
||||
// init_hash_tables() dynamically allocates pawn and material hash tables
|
||||
// according to the number of active threads. This avoids preallocating
|
||||
// memory for all possible threads if only few are used as, for instance,
|
||||
// on mobile devices where memory is scarce and allocating for MAX_THREADS
|
||||
// threads could even result in a crash.
|
||||
|
||||
void ThreadsManager::init_hash_tables() {
|
||||
|
||||
for (int i = 0; i < activeThreads; i++)
|
||||
{
|
||||
threads[i].pawnTable.init();
|
||||
threads[i].materialTable.init();
|
||||
}
|
||||
lock_destroy(&threadsLock);
|
||||
cond_destroy(&sleepCond);
|
||||
}
|
||||
|
||||
|
||||
// available_slave_exists() tries to find an idle thread which is available as
|
||||
// a slave for the thread with threadID "master".
|
||||
// a slave for the thread with threadID 'master'.
|
||||
|
||||
bool ThreadsManager::available_slave_exists(int master) const {
|
||||
|
||||
assert(master >= 0 && master < activeThreads);
|
||||
|
||||
for (int i = 0; i < activeThreads; i++)
|
||||
if (i != master && threads[i].is_available_to(master))
|
||||
if (threads[i].is_available_to(master))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// split_point_finished() checks if all the slave threads of a given split
|
||||
// point have finished searching.
|
||||
|
||||
bool ThreadsManager::split_point_finished(SplitPoint* sp) const {
|
||||
|
||||
for (int i = 0; i < activeThreads; i++)
|
||||
if (sp->is_slave[i])
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// split() does the actual work of distributing the work at a node between
|
||||
// several available threads. If it does not succeed in splitting the
|
||||
// node (because no idle threads are available, or because we have no unused
|
||||
// split point objects), the function immediately returns. If splitting is
|
||||
// possible, a SplitPoint object is initialized with all the data that must be
|
||||
// copied to the helper threads and we tell our helper threads that they have
|
||||
// been assigned work. This will cause them to instantly leave their idle loops and
|
||||
// call search().When all threads have returned from search() then split() returns.
|
||||
// several available threads. If it does not succeed in splitting the node
|
||||
// (because no idle threads are available, or because we have no unused split
|
||||
// point objects), the function immediately returns. If splitting is possible, a
|
||||
// SplitPoint object is initialized with all the data that must be copied to the
|
||||
// helper threads and then helper threads are told that they have been assigned
|
||||
// work. This will cause them to instantly leave their idle loops and call
|
||||
// search(). When all threads have returned from search() then split() returns.
|
||||
|
||||
template <bool Fake>
|
||||
void ThreadsManager::split(Position& pos, SearchStack* ss, Value* alpha, const Value beta,
|
||||
Value* bestValue, Depth depth, Move threatMove,
|
||||
int moveCount, MovePicker* mp, bool pvNode) {
|
||||
assert(pos.is_ok());
|
||||
assert(*bestValue >= -VALUE_INFINITE);
|
||||
assert(*bestValue <= *alpha);
|
||||
assert(*alpha < beta);
|
||||
Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta,
|
||||
Value bestValue, Depth depth, Move threatMove,
|
||||
int moveCount, MovePicker* mp, int nodeType) {
|
||||
assert(pos.pos_is_ok());
|
||||
assert(bestValue > -VALUE_INFINITE);
|
||||
assert(bestValue <= alpha);
|
||||
assert(alpha < beta);
|
||||
assert(beta <= VALUE_INFINITE);
|
||||
assert(depth > DEPTH_ZERO);
|
||||
assert(pos.thread() >= 0 && pos.thread() < activeThreads);
|
||||
@@ -253,93 +274,228 @@ void ThreadsManager::split(Position& pos, SearchStack* ss, Value* alpha, const V
|
||||
int i, master = pos.thread();
|
||||
Thread& masterThread = threads[master];
|
||||
|
||||
lock_grab(&mpLock);
|
||||
// If we already have too many active split points, don't split
|
||||
if (masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
|
||||
return bestValue;
|
||||
|
||||
// If no other thread is available to help us, or if we have too many
|
||||
// active split points, don't split.
|
||||
if ( !available_slave_exists(master)
|
||||
|| masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
|
||||
{
|
||||
lock_release(&mpLock);
|
||||
return;
|
||||
}
|
||||
// Pick the next available split point from the split point stack
|
||||
SplitPoint* sp = &masterThread.splitPoints[masterThread.activeSplitPoints];
|
||||
|
||||
// Pick the next available split point object from the split point stack
|
||||
SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++];
|
||||
// Initialize the split point
|
||||
sp->parent = masterThread.splitPoint;
|
||||
sp->master = master;
|
||||
sp->is_betaCutoff = false;
|
||||
sp->depth = depth;
|
||||
sp->threatMove = threatMove;
|
||||
sp->alpha = alpha;
|
||||
sp->beta = beta;
|
||||
sp->nodeType = nodeType;
|
||||
sp->bestValue = bestValue;
|
||||
sp->mp = mp;
|
||||
sp->moveCount = moveCount;
|
||||
sp->pos = &pos;
|
||||
sp->nodes = 0;
|
||||
sp->ss = ss;
|
||||
|
||||
// Initialize the split point object
|
||||
splitPoint.parent = masterThread.splitPoint;
|
||||
splitPoint.master = master;
|
||||
splitPoint.is_betaCutoff = false;
|
||||
splitPoint.depth = depth;
|
||||
splitPoint.threatMove = threatMove;
|
||||
splitPoint.alpha = *alpha;
|
||||
splitPoint.beta = beta;
|
||||
splitPoint.pvNode = pvNode;
|
||||
splitPoint.bestValue = *bestValue;
|
||||
splitPoint.mp = mp;
|
||||
splitPoint.moveCount = moveCount;
|
||||
splitPoint.pos = &pos;
|
||||
splitPoint.nodes = 0;
|
||||
splitPoint.ss = ss;
|
||||
for (i = 0; i < activeThreads; i++)
|
||||
splitPoint.is_slave[i] = false;
|
||||
|
||||
masterThread.splitPoint = &splitPoint;
|
||||
sp->is_slave[i] = false;
|
||||
|
||||
// If we are here it means we are not available
|
||||
assert(masterThread.state != Thread::AVAILABLE);
|
||||
assert(masterThread.is_searching);
|
||||
|
||||
int workersCnt = 1; // At least the master is included
|
||||
|
||||
// Allocate available threads setting state to THREAD_BOOKED
|
||||
// Try to allocate available threads and ask them to start searching setting
|
||||
// is_searching flag. This must be done under lock protection to avoid concurrent
|
||||
// allocation of the same slave by another master.
|
||||
lock_grab(&threadsLock);
|
||||
|
||||
for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++)
|
||||
if (i != master && threads[i].is_available_to(master))
|
||||
if (threads[i].is_available_to(master))
|
||||
{
|
||||
threads[i].state = Thread::BOOKED;
|
||||
threads[i].splitPoint = &splitPoint;
|
||||
splitPoint.is_slave[i] = true;
|
||||
workersCnt++;
|
||||
}
|
||||
sp->is_slave[i] = true;
|
||||
threads[i].splitPoint = sp;
|
||||
|
||||
assert(Fake || workersCnt > 1);
|
||||
// This makes the slave to exit from idle_loop()
|
||||
threads[i].is_searching = true;
|
||||
|
||||
// We can release the lock because slave threads are already booked and master is not available
|
||||
lock_release(&mpLock);
|
||||
|
||||
// Tell the threads that they have work to do. This will make them leave
|
||||
// their idle loop.
|
||||
for (i = 0; i < activeThreads; i++)
|
||||
if (i == master || splitPoint.is_slave[i])
|
||||
{
|
||||
assert(i == master || threads[i].state == Thread::BOOKED);
|
||||
|
||||
threads[i].state = Thread::WORKISWAITING; // This makes the slave to exit from idle_loop()
|
||||
|
||||
if (useSleepingThreads && i != master)
|
||||
if (useSleepingThreads)
|
||||
threads[i].wake_up();
|
||||
}
|
||||
|
||||
// Everything is set up. The master thread enters the idle loop, from
|
||||
// which it will instantly launch a search, because its state is
|
||||
// THREAD_WORKISWAITING. We send the split point as a second parameter to the
|
||||
// idle loop, which means that the main thread will return from the idle
|
||||
// loop when all threads have finished their work at this split point.
|
||||
idle_loop(master, &splitPoint);
|
||||
lock_release(&threadsLock);
|
||||
|
||||
// We failed to allocate even one slave, return
|
||||
if (!Fake && workersCnt == 1)
|
||||
return bestValue;
|
||||
|
||||
masterThread.splitPoint = sp;
|
||||
masterThread.activeSplitPoints++;
|
||||
|
||||
// Everything is set up. The master thread enters the idle loop, from which
|
||||
// it will instantly launch a search, because its is_searching flag is set.
|
||||
// We pass the split point as a parameter to the idle loop, which means that
|
||||
// the thread will return from the idle loop when all slaves have finished
|
||||
// their work at this split point.
|
||||
masterThread.idle_loop(sp);
|
||||
|
||||
// In helpful master concept a master can help only a sub-tree of its split
|
||||
// point, and because here is all finished is not possible master is booked.
|
||||
assert(!masterThread.is_searching);
|
||||
|
||||
// We have returned from the idle loop, which means that all threads are
|
||||
// finished. Update alpha and bestValue, and return.
|
||||
lock_grab(&mpLock);
|
||||
// finished. Note that changing state and decreasing activeSplitPoints is done
|
||||
// under lock protection to avoid a race with Thread::is_available_to().
|
||||
lock_grab(&threadsLock);
|
||||
|
||||
*alpha = splitPoint.alpha;
|
||||
*bestValue = splitPoint.bestValue;
|
||||
masterThread.is_searching = true;
|
||||
masterThread.activeSplitPoints--;
|
||||
masterThread.splitPoint = splitPoint.parent;
|
||||
pos.set_nodes_searched(pos.nodes_searched() + splitPoint.nodes);
|
||||
|
||||
lock_release(&mpLock);
|
||||
lock_release(&threadsLock);
|
||||
|
||||
masterThread.splitPoint = sp->parent;
|
||||
pos.set_nodes_searched(pos.nodes_searched() + sp->nodes);
|
||||
|
||||
return sp->bestValue;
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template void ThreadsManager::split<false>(Position&, SearchStack*, Value*, const Value, Value*, Depth, Move, int, MovePicker*, bool);
|
||||
template void ThreadsManager::split<true>(Position&, SearchStack*, Value*, const Value, Value*, Depth, Move, int, MovePicker*, bool);
|
||||
template Value ThreadsManager::split<false>(Position&, Stack*, Value, Value, Value, Depth, Move, int, MovePicker*, int);
|
||||
template Value ThreadsManager::split<true>(Position&, Stack*, Value, Value, Value, Depth, Move, int, MovePicker*, int);
|
||||
|
||||
|
||||
// Thread::timer_loop() is where the timer thread waits maxPly milliseconds and
|
||||
// then calls do_timer_event(). If maxPly is 0 thread sleeps until is woken up.
|
||||
extern void do_timer_event();
|
||||
|
||||
void Thread::timer_loop() {
|
||||
|
||||
while (!do_terminate)
|
||||
{
|
||||
lock_grab(&sleepLock);
|
||||
timed_wait(&sleepCond, &sleepLock, maxPly ? maxPly : INT_MAX);
|
||||
lock_release(&sleepLock);
|
||||
do_timer_event();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ThreadsManager::set_timer() is used to set the timer to trigger after msec
|
||||
// milliseconds. If msec is 0 then timer is stopped.
|
||||
|
||||
void ThreadsManager::set_timer(int msec) {
|
||||
|
||||
Thread& timer = threads[MAX_THREADS];
|
||||
|
||||
lock_grab(&timer.sleepLock);
|
||||
timer.maxPly = msec;
|
||||
cond_signal(&timer.sleepCond); // Wake up and restart the timer
|
||||
lock_release(&timer.sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// Thread::main_loop() is where the main thread is parked waiting to be started
|
||||
// when there is a new search. Main thread will launch all the slave threads.
|
||||
|
||||
void Thread::main_loop() {
|
||||
|
||||
while (true)
|
||||
{
|
||||
lock_grab(&sleepLock);
|
||||
|
||||
do_sleep = true; // Always return to sleep after a search
|
||||
is_searching = false;
|
||||
|
||||
while (do_sleep && !do_terminate)
|
||||
{
|
||||
cond_signal(&Threads.sleepCond); // Wake up UI thread if needed
|
||||
cond_wait(&sleepCond, &sleepLock);
|
||||
}
|
||||
|
||||
is_searching = true;
|
||||
|
||||
lock_release(&sleepLock);
|
||||
|
||||
if (do_terminate)
|
||||
return;
|
||||
|
||||
think(); // This is the search entry point
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// ThreadsManager::start_thinking() is used by UI thread to wake up the main
|
||||
// thread parked in main_loop() and starting a new search. If asyncMode is true
|
||||
// then function returns immediately, otherwise caller is blocked waiting for
|
||||
// the search to finish.
|
||||
|
||||
void ThreadsManager::start_thinking(const Position& pos, const LimitsType& limits,
|
||||
const std::vector<Move>& searchMoves, bool asyncMode) {
|
||||
Thread& main = threads[0];
|
||||
|
||||
lock_grab(&main.sleepLock);
|
||||
|
||||
// Wait main thread has finished before to launch a new search
|
||||
while (!main.do_sleep)
|
||||
cond_wait(&sleepCond, &main.sleepLock);
|
||||
|
||||
// Copy input arguments to initialize the search
|
||||
RootPosition.copy(pos, 0);
|
||||
Limits = limits;
|
||||
SearchMoves = searchMoves;
|
||||
|
||||
// Reset signals before to start the new search
|
||||
memset((void*)&Signals, 0, sizeof(Signals));
|
||||
|
||||
main.do_sleep = false;
|
||||
cond_signal(&main.sleepCond); // Wake up main thread and start searching
|
||||
|
||||
if (!asyncMode)
|
||||
cond_wait(&sleepCond, &main.sleepLock);
|
||||
|
||||
lock_release(&main.sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// ThreadsManager::stop_thinking() is used by UI thread to raise a stop request
|
||||
// and to wait for the main thread finishing the search. Needed to wait exiting
|
||||
// and terminate the threads after a 'quit' command.
|
||||
|
||||
void ThreadsManager::stop_thinking() {
|
||||
|
||||
Thread& main = threads[0];
|
||||
|
||||
Search::Signals.stop = true;
|
||||
|
||||
lock_grab(&main.sleepLock);
|
||||
|
||||
cond_signal(&main.sleepCond); // In case is waiting for stop or ponderhit
|
||||
|
||||
while (!main.do_sleep)
|
||||
cond_wait(&sleepCond, &main.sleepLock);
|
||||
|
||||
lock_release(&main.sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// ThreadsManager::wait_for_stop_or_ponderhit() is called when the maximum depth
|
||||
// is reached while the program is pondering. The point is to work around a wrinkle
|
||||
// in the UCI protocol: When pondering, the engine is not allowed to give a
|
||||
// "bestmove" before the GUI sends it a "stop" or "ponderhit" command. We simply
|
||||
// wait here until one of these commands (that raise StopRequest) is sent and
|
||||
// then return, after which the bestmove and pondermove will be printed.
|
||||
|
||||
void ThreadsManager::wait_for_stop_or_ponderhit() {
|
||||
|
||||
Signals.stopOnPonderhit = true;
|
||||
|
||||
Thread& main = threads[0];
|
||||
|
||||
lock_grab(&main.sleepLock);
|
||||
|
||||
while (!Signals.stop)
|
||||
cond_wait(&main.sleepCond, &main.sleepLock);
|
||||
|
||||
lock_release(&main.sleepLock);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user