mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-12 09:02:41 +01:00
DroidFish: Updated stockfish engine to version 2.2.
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@@ -19,6 +19,7 @@
|
||||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
#include "material.h"
|
||||
|
||||
@@ -49,13 +50,13 @@ namespace {
|
||||
|
||||
// Endgame evaluation and scaling functions accessed direcly and not through
|
||||
// the function maps because correspond to more then one material hash key.
|
||||
Endgame<Value, KmmKm> EvaluateKmmKm[] = { Endgame<Value, KmmKm>(WHITE), Endgame<Value, KmmKm>(BLACK) };
|
||||
Endgame<Value, KXK> EvaluateKXK[] = { Endgame<Value, KXK>(WHITE), Endgame<Value, KXK>(BLACK) };
|
||||
Endgame<KmmKm> EvaluateKmmKm[] = { Endgame<KmmKm>(WHITE), Endgame<KmmKm>(BLACK) };
|
||||
Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
|
||||
|
||||
Endgame<ScaleFactor, KBPsK> ScaleKBPsK[] = { Endgame<ScaleFactor, KBPsK>(WHITE), Endgame<ScaleFactor, KBPsK>(BLACK) };
|
||||
Endgame<ScaleFactor, KQKRPs> ScaleKQKRPs[] = { Endgame<ScaleFactor, KQKRPs>(WHITE), Endgame<ScaleFactor, KQKRPs>(BLACK) };
|
||||
Endgame<ScaleFactor, KPsK> ScaleKPsK[] = { Endgame<ScaleFactor, KPsK>(WHITE), Endgame<ScaleFactor, KPsK>(BLACK) };
|
||||
Endgame<ScaleFactor, KPKP> ScaleKPKP[] = { Endgame<ScaleFactor, KPKP>(WHITE), Endgame<ScaleFactor, KPKP>(BLACK) };
|
||||
Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) };
|
||||
Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
|
||||
Endgame<KPsK> ScaleKPsK[] = { Endgame<KPsK>(WHITE), Endgame<KPsK>(BLACK) };
|
||||
Endgame<KPKP> ScaleKPKP[] = { Endgame<KPKP>(WHITE), Endgame<KPKP>(BLACK) };
|
||||
|
||||
// Helper templates used to detect a given material distribution
|
||||
template<Color Us> bool is_KXK(const Position& pos) {
|
||||
@@ -89,15 +90,15 @@ void MaterialInfoTable::init() { Base::init(); if (!funcs) funcs = new Endgames(
|
||||
MaterialInfoTable::~MaterialInfoTable() { delete funcs; }
|
||||
|
||||
|
||||
/// MaterialInfoTable::get_material_info() takes a position object as input,
|
||||
/// MaterialInfoTable::material_info() takes a position object as input,
|
||||
/// computes or looks up a MaterialInfo object, and returns a pointer to it.
|
||||
/// If the material configuration is not already present in the table, it
|
||||
/// is stored there, so we don't have to recompute everything when the
|
||||
/// same material configuration occurs again.
|
||||
|
||||
MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
|
||||
MaterialInfo* MaterialInfoTable::material_info(const Position& pos) const {
|
||||
|
||||
Key key = pos.get_material_key();
|
||||
Key key = pos.material_key();
|
||||
MaterialInfo* mi = probe(key);
|
||||
|
||||
// If mi->key matches the position's material hash key, it means that we
|
||||
@@ -117,7 +118,7 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
|
||||
// Let's look if we have a specialized evaluation function for this
|
||||
// particular material configuration. First we look for a fixed
|
||||
// configuration one, then a generic one if previous search failed.
|
||||
if ((mi->evaluationFunction = funcs->get<EndgameBase<Value> >(key)) != NULL)
|
||||
if ((mi->evaluationFunction = funcs->get<Value>(key)) != NULL)
|
||||
return mi;
|
||||
|
||||
if (is_KXK<WHITE>(pos))
|
||||
@@ -142,7 +143,7 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
|
||||
if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
|
||||
&& pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
|
||||
{
|
||||
mi->evaluationFunction = &EvaluateKmmKm[WHITE];
|
||||
mi->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()];
|
||||
return mi;
|
||||
}
|
||||
}
|
||||
@@ -154,7 +155,7 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
|
||||
// scaling functions and we need to decide which one to use.
|
||||
EndgameBase<ScaleFactor>* sf;
|
||||
|
||||
if ((sf = funcs->get<EndgameBase<ScaleFactor> >(key)) != NULL)
|
||||
if ((sf = funcs->get<ScaleFactor>(key)) != NULL)
|
||||
{
|
||||
mi->scalingFunction[sf->color()] = sf;
|
||||
return mi;
|
||||
@@ -203,13 +204,13 @@ MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
|
||||
if (pos.piece_count(WHITE, PAWN) == 0 && npm_w - npm_b <= BishopValueMidgame)
|
||||
{
|
||||
mi->factor[WHITE] = uint8_t
|
||||
(npm_w == npm_b || npm_w < RookValueMidgame ? 0 : NoPawnsSF[Min(pos.piece_count(WHITE, BISHOP), 2)]);
|
||||
(npm_w == npm_b || npm_w < RookValueMidgame ? 0 : NoPawnsSF[std::min(pos.piece_count(WHITE, BISHOP), 2)]);
|
||||
}
|
||||
|
||||
if (pos.piece_count(BLACK, PAWN) == 0 && npm_b - npm_w <= BishopValueMidgame)
|
||||
{
|
||||
mi->factor[BLACK] = uint8_t
|
||||
(npm_w == npm_b || npm_b < RookValueMidgame ? 0 : NoPawnsSF[Min(pos.piece_count(BLACK, BISHOP), 2)]);
|
||||
(npm_w == npm_b || npm_b < RookValueMidgame ? 0 : NoPawnsSF[std::min(pos.piece_count(BLACK, BISHOP), 2)]);
|
||||
}
|
||||
|
||||
// Compute the space weight
|
||||
@@ -253,7 +254,7 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
|
||||
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
|
||||
|
||||
// Second-degree polynomial material imbalance by Tord Romstad
|
||||
for (pt1 = PIECE_TYPE_NONE; pt1 <= QUEEN; pt1++)
|
||||
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
|
||||
{
|
||||
pc = pieceCount[Us][pt1];
|
||||
if (!pc)
|
||||
@@ -261,7 +262,7 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
|
||||
|
||||
v = LinearCoefficients[pt1];
|
||||
|
||||
for (pt2 = PIECE_TYPE_NONE; pt2 <= pt1; pt2++)
|
||||
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
|
||||
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
|
||||
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
|
||||
|
||||
|
||||
Reference in New Issue
Block a user