DroidFish: Updated stockfish engine to version 4.

This commit is contained in:
Peter Osterlund
2013-08-20 18:02:33 +00:00
parent 96a8ec79ac
commit bfc5782f52
41 changed files with 1477 additions and 1673 deletions

View File

@@ -17,12 +17,12 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <cassert>
#include <cstring>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <algorithm>
#include "bitcount.h"
#include "movegen.h"
@@ -41,96 +41,50 @@ static const string PieceToChar(" PNBRQK pnbrqk");
CACHE_LINE_ALIGNMENT
Score pieceSquareTable[PIECE_NB][SQUARE_NB];
Score psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB];
Value PieceValue[PHASE_NB][PIECE_NB] = {
{ VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg },
{ VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg } };
namespace Zobrist {
Key psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB];
Key enpassant[FILE_NB];
Key castle[CASTLE_RIGHT_NB];
Key side;
Key exclusion;
/// init() initializes at startup the various arrays used to compute hash keys
/// and the piece square tables. The latter is a two-step operation: First, the
/// white halves of the tables are copied from PSQT[] tables. Second, the black
/// halves of the tables are initialized by flipping and changing the sign of
/// the white scores.
void init() {
RKISS rk;
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= KING; pt++)
for (Square s = SQ_A1; s <= SQ_H8; s++)
psq[c][pt][s] = rk.rand<Key>();
for (File f = FILE_A; f <= FILE_H; f++)
enpassant[f] = rk.rand<Key>();
for (int cr = CASTLES_NONE; cr <= ALL_CASTLES; cr++)
{
Bitboard b = cr;
while (b)
{
Key k = castle[1ULL << pop_lsb(&b)];
castle[cr] ^= k ? k : rk.rand<Key>();
}
}
side = rk.rand<Key>();
exclusion = rk.rand<Key>();
for (PieceType pt = PAWN; pt <= KING; pt++)
{
PieceValue[MG][make_piece(BLACK, pt)] = PieceValue[MG][pt];
PieceValue[EG][make_piece(BLACK, pt)] = PieceValue[EG][pt];
Score v = make_score(PieceValue[MG][pt], PieceValue[EG][pt]);
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
pieceSquareTable[make_piece(WHITE, pt)][ s] = (v + PSQT[pt][s]);
pieceSquareTable[make_piece(BLACK, pt)][~s] = -(v + PSQT[pt][s]);
}
}
Key psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB];
Key enpassant[FILE_NB];
Key castle[CASTLE_RIGHT_NB];
Key side;
Key exclusion;
}
} // namespace Zobrist
Key Position::exclusion_key() const { return st->key ^ Zobrist::exclusion;}
namespace {
/// next_attacker() is an helper function used by see() to locate the least
/// valuable attacker for the side to move, remove the attacker we just found
/// from the 'occupied' bitboard and scan for new X-ray attacks behind it.
// min_attacker() is an helper function used by see() to locate the least
// valuable attacker for the side to move, remove the attacker we just found
// from the bitboards and scan for new X-ray attacks behind it.
template<int Pt> FORCE_INLINE
PieceType next_attacker(const Bitboard* bb, const Square& to, const Bitboard& stmAttackers,
Bitboard& occupied, Bitboard& attackers) {
PieceType min_attacker(const Bitboard* bb, const Square& to, const Bitboard& stmAttackers,
Bitboard& occupied, Bitboard& attackers) {
if (stmAttackers & bb[Pt])
{
Bitboard b = stmAttackers & bb[Pt];
occupied ^= b & ~(b - 1);
Bitboard b = stmAttackers & bb[Pt];
if (!b)
return min_attacker<Pt+1>(bb, to, stmAttackers, occupied, attackers);
if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN)
attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]);
occupied ^= b & ~(b - 1);
if (Pt == ROOK || Pt == QUEEN)
attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]);
if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN)
attackers |= attacks_bb<BISHOP>(to, occupied) & (bb[BISHOP] | bb[QUEEN]);
return (PieceType)Pt;
}
return next_attacker<Pt+1>(bb, to, stmAttackers, occupied, attackers);
if (Pt == ROOK || Pt == QUEEN)
attackers |= attacks_bb<ROOK>(to, occupied) & (bb[ROOK] | bb[QUEEN]);
attackers &= occupied; // After X-ray that may add already processed pieces
return (PieceType)Pt;
}
template<> FORCE_INLINE
PieceType next_attacker<KING>(const Bitboard*, const Square&, const Bitboard&, Bitboard&, Bitboard&) {
PieceType min_attacker<KING>(const Bitboard*, const Square&, const Bitboard&, Bitboard&, Bitboard&) {
return KING; // No need to update bitboards, it is the last cycle
}
@@ -156,13 +110,60 @@ CheckInfo::CheckInfo(const Position& pos) {
}
/// Position::init() initializes at startup the various arrays used to compute
/// hash keys and the piece square tables. The latter is a two-step operation:
/// First, the white halves of the tables are copied from PSQT[] tables. Second,
/// the black halves of the tables are initialized by flipping and changing the
/// sign of the white scores.
void Position::init() {
RKISS rk;
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= KING; pt++)
for (Square s = SQ_A1; s <= SQ_H8; s++)
Zobrist::psq[c][pt][s] = rk.rand<Key>();
for (File f = FILE_A; f <= FILE_H; f++)
Zobrist::enpassant[f] = rk.rand<Key>();
for (int cr = CASTLES_NONE; cr <= ALL_CASTLES; cr++)
{
Bitboard b = cr;
while (b)
{
Key k = Zobrist::castle[1ULL << pop_lsb(&b)];
Zobrist::castle[cr] ^= k ? k : rk.rand<Key>();
}
}
Zobrist::side = rk.rand<Key>();
Zobrist::exclusion = rk.rand<Key>();
for (PieceType pt = PAWN; pt <= KING; pt++)
{
PieceValue[MG][make_piece(BLACK, pt)] = PieceValue[MG][pt];
PieceValue[EG][make_piece(BLACK, pt)] = PieceValue[EG][pt];
Score v = make_score(PieceValue[MG][pt], PieceValue[EG][pt]);
for (Square s = SQ_A1; s <= SQ_H8; s++)
{
psq[WHITE][pt][ s] = (v + PSQT[pt][s]);
psq[BLACK][pt][~s] = -(v + PSQT[pt][s]);
}
}
}
/// Position::operator=() creates a copy of 'pos'. We want the new born Position
/// object do not depend on any external data so we detach state pointer from
/// the source one.
Position& Position::operator=(const Position& pos) {
memcpy(this, &pos, sizeof(Position));
std::memcpy(this, &pos, sizeof(Position));
startState = *st;
st = &startState;
nodes = 0;
@@ -231,7 +232,7 @@ void Position::set(const string& fenStr, bool isChess960, Thread* th) {
else if ((p = PieceToChar.find(token)) != string::npos)
{
put_piece(Piece(p), sq);
put_piece(sq, color_of(Piece(p)), type_of(Piece(p)));
sq++;
}
}
@@ -288,7 +289,7 @@ void Position::set(const string& fenStr, bool isChess960, Thread* th) {
st->key = compute_key();
st->pawnKey = compute_pawn_key();
st->materialKey = compute_material_key();
st->psqScore = compute_psq_score();
st->psq = compute_psq_score();
st->npMaterial[WHITE] = compute_non_pawn_material(WHITE);
st->npMaterial[BLACK] = compute_non_pawn_material(BLACK);
st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove);
@@ -391,16 +392,18 @@ const string Position::pretty(Move move) const {
string brd = twoRows + twoRows + twoRows + twoRows + dottedLine;
for (Bitboard b = pieces(); b; )
{
Square s = pop_lsb(&b);
brd[513 - 68 * rank_of(s) + 4 * file_of(s)] = PieceToChar[piece_on(s)];
}
std::ostringstream ss;
if (move)
ss << "\nMove: " << (sideToMove == BLACK ? ".." : "")
<< move_to_san(*const_cast<Position*>(this), move);
for (Square sq = SQ_A1; sq <= SQ_H8; sq++)
if (piece_on(sq) != NO_PIECE)
brd[513 - 68*rank_of(sq) + 4*file_of(sq)] = PieceToChar[piece_on(sq)];
ss << brd << "\nFen: " << fen() << "\nKey: " << std::hex << std::uppercase
<< std::setfill('0') << std::setw(16) << st->key << "\nCheckers: ";
@@ -408,43 +411,35 @@ const string Position::pretty(Move move) const {
ss << square_to_string(pop_lsb(&b)) << " ";
ss << "\nLegal moves: ";
for (MoveList<LEGAL> ml(*this); !ml.end(); ++ml)
ss << move_to_san(*const_cast<Position*>(this), ml.move()) << " ";
for (MoveList<LEGAL> it(*this); *it; ++it)
ss << move_to_san(*const_cast<Position*>(this), *it) << " ";
return ss.str();
}
/// Position:hidden_checkers<>() returns a bitboard of all pinned (against the
/// king) pieces for the given color. Or, when template parameter FindPinned is
/// false, the function return the pieces of the given color candidate for a
/// discovery check against the enemy king.
template<bool FindPinned>
Bitboard Position::hidden_checkers() const {
/// Position:hidden_checkers() returns a bitboard of all pinned / discovery check
/// pieces, according to the call parameters. Pinned pieces protect our king,
/// discovery check pieces attack the enemy king.
// Pinned pieces protect our king, dicovery checks attack the enemy king
Bitboard b, result = 0;
Bitboard pinners = pieces(FindPinned ? ~sideToMove : sideToMove);
Square ksq = king_square(FindPinned ? sideToMove : ~sideToMove);
Bitboard Position::hidden_checkers(Square ksq, Color c) const {
// Pinners are sliders, that give check when candidate pinned is removed
pinners &= (pieces(ROOK, QUEEN) & PseudoAttacks[ROOK][ksq])
| (pieces(BISHOP, QUEEN) & PseudoAttacks[BISHOP][ksq]);
Bitboard b, pinners, result = 0;
// Pinners are sliders that give check when pinned piece is removed
pinners = ( (pieces( ROOK, QUEEN) & PseudoAttacks[ROOK ][ksq])
| (pieces(BISHOP, QUEEN) & PseudoAttacks[BISHOP][ksq])) & pieces(c);
while (pinners)
{
b = between_bb(ksq, pop_lsb(&pinners)) & pieces();
if (b && !more_than_one(b) && (b & pieces(sideToMove)))
result |= b;
if (!more_than_one(b))
result |= b & pieces(sideToMove);
}
return result;
}
// Explicit template instantiations
template Bitboard Position::hidden_checkers<true>() const;
template Bitboard Position::hidden_checkers<false>() const;
/// Position::attackers_to() computes a bitboard of all pieces which attack a
/// given square. Slider attacks use occ bitboard as occupancy.
@@ -549,7 +544,7 @@ bool Position::is_pseudo_legal(const Move m) const {
return false;
// The destination square cannot be occupied by a friendly piece
if (piece_on(to) != NO_PIECE && color_of(piece_on(to)) == us)
if (pieces(us) & to)
return false;
// Handle the special case of a pawn move
@@ -659,7 +654,7 @@ bool Position::move_gives_check(Move m, const CheckInfo& ci) const {
return true;
// Discovery check ?
if (ci.dcCandidates && (ci.dcCandidates & from))
if (unlikely(ci.dcCandidates) && (ci.dcCandidates & from))
{
// For pawn and king moves we need to verify also direction
if ( (pt != PAWN && pt != KING)
@@ -697,9 +692,9 @@ bool Position::move_gives_check(Move m, const CheckInfo& ci) const {
Square rfrom = to; // 'King captures the rook' notation
Square kto = relative_square(us, rfrom > kfrom ? SQ_G1 : SQ_C1);
Square rto = relative_square(us, rfrom > kfrom ? SQ_F1 : SQ_D1);
Bitboard b = (pieces() ^ kfrom ^ rfrom) | rto | kto;
return attacks_bb<ROOK>(rto, b) & ksq;
return (PseudoAttacks[ROOK][rto] & ksq)
&& (attacks_bb<ROOK>(rto, (pieces() ^ kfrom ^ rfrom) | rto | kto) & ksq);
}
default:
assert(false);
@@ -729,7 +724,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
// Copy some fields of old state to our new StateInfo object except the ones
// which are going to be recalculated from scratch anyway, then switch our state
// pointer to point to the new, ready to be updated, state.
memcpy(&newSt, st, StateCopySize64 * sizeof(uint64_t));
std::memcpy(&newSt, st, StateCopySize64 * sizeof(uint64_t));
newSt.previous = st;
st = &newSt;
@@ -747,17 +742,17 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
Color them = ~us;
Square from = from_sq(m);
Square to = to_sq(m);
Piece piece = piece_on(from);
PieceType pt = type_of(piece);
Piece pc = piece_on(from);
PieceType pt = type_of(pc);
PieceType capture = type_of(m) == ENPASSANT ? PAWN : type_of(piece_on(to));
assert(color_of(piece) == us);
assert(color_of(pc) == us);
assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == them || type_of(m) == CASTLE);
assert(capture != KING);
if (type_of(m) == CASTLE)
{
assert(piece == make_piece(us, KING));
assert(pc == make_piece(us, KING));
bool kingSide = to > from;
Square rfrom = to; // Castle is encoded as "king captures friendly rook"
@@ -767,7 +762,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
do_castle(from, to, rfrom, rto);
st->psqScore += psq_delta(make_piece(us, ROOK), rfrom, rto);
st->psq += psq[us][ROOK][rto] - psq[us][ROOK][rfrom];
k ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto];
}
@@ -797,22 +792,8 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
else
st->npMaterial[them] -= PieceValue[MG][capture];
// Remove the captured piece
byTypeBB[ALL_PIECES] ^= capsq;
byTypeBB[capture] ^= capsq;
byColorBB[them] ^= capsq;
// Update piece list, move the last piece at index[capsq] position and
// shrink the list.
//
// WARNING: This is a not reversible operation. When we will reinsert the
// captured piece in undo_move() we will put it at the end of the list and
// not in its original place, it means index[] and pieceList[] are not
// guaranteed to be invariant to a do_move() + undo_move() sequence.
Square lastSquare = pieceList[them][capture][--pieceCount[them][capture]];
index[lastSquare] = index[capsq];
pieceList[them][capture][index[lastSquare]] = lastSquare;
pieceList[them][capture][pieceCount[them][capture]] = SQ_NONE;
// Update board and piece lists
remove_piece(capsq, them, capture);
// Update material hash key and prefetch access to materialTable
k ^= Zobrist::psq[them][capture][capsq];
@@ -820,7 +801,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
prefetch((char*)thisThread->materialTable[st->materialKey]);
// Update incremental scores
st->psqScore -= pieceSquareTable[make_piece(them, capture)][capsq];
st->psq -= psq[them][capture][capsq];
// Reset rule 50 counter
st->rule50 = 0;
@@ -849,20 +830,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
// Move the piece. The tricky Chess960 castle is handled earlier
if (type_of(m) != CASTLE)
{
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
byTypeBB[ALL_PIECES] ^= from_to_bb;
byTypeBB[pt] ^= from_to_bb;
byColorBB[us] ^= from_to_bb;
board[from] = NO_PIECE;
board[to] = piece;
// Update piece lists, index[from] is not updated and becomes stale. This
// works as long as index[] is accessed just by known occupied squares.
index[to] = index[from];
pieceList[us][pt][index[to]] = to;
}
move_piece(from, to, us, pt);
// If the moving piece is a pawn do some special extra work
if (pt == PAWN)
@@ -882,29 +850,17 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
assert(relative_rank(us, to) == RANK_8);
assert(promotion >= KNIGHT && promotion <= QUEEN);
// Replace the pawn with the promoted piece
byTypeBB[PAWN] ^= to;
byTypeBB[promotion] |= to;
board[to] = make_piece(us, promotion);
// Update piece lists, move the last pawn at index[to] position
// and shrink the list. Add a new promotion piece to the list.
Square lastSquare = pieceList[us][PAWN][--pieceCount[us][PAWN]];
index[lastSquare] = index[to];
pieceList[us][PAWN][index[lastSquare]] = lastSquare;
pieceList[us][PAWN][pieceCount[us][PAWN]] = SQ_NONE;
index[to] = pieceCount[us][promotion];
pieceList[us][promotion][index[to]] = to;
remove_piece(to, us, PAWN);
put_piece(to, us, promotion);
// Update hash keys
k ^= Zobrist::psq[us][PAWN][to] ^ Zobrist::psq[us][promotion][to];
st->pawnKey ^= Zobrist::psq[us][PAWN][to];
st->materialKey ^= Zobrist::psq[us][promotion][pieceCount[us][promotion]++]
st->materialKey ^= Zobrist::psq[us][promotion][pieceCount[us][promotion]-1]
^ Zobrist::psq[us][PAWN][pieceCount[us][PAWN]];
// Update incremental score
st->psqScore += pieceSquareTable[make_piece(us, promotion)][to]
- pieceSquareTable[make_piece(us, PAWN)][to];
st->psq += psq[us][promotion][to] - psq[us][PAWN][to];
// Update material
st->npMaterial[us] += PieceValue[MG][promotion];
@@ -919,7 +875,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
}
// Update incremental scores
st->psqScore += psq_delta(piece, from, to);
st->psq += psq[us][pt][to] - psq[us][pt][from];
// Set capture piece
st->capturedType = capture;
@@ -985,20 +941,8 @@ void Position::undo_move(Move m) {
assert(relative_rank(us, to) == RANK_8);
assert(promotion >= KNIGHT && promotion <= QUEEN);
// Replace the promoted piece with the pawn
byTypeBB[promotion] ^= to;
byTypeBB[PAWN] |= to;
board[to] = make_piece(us, PAWN);
// Update piece lists, move the last promoted piece at index[to] position
// and shrink the list. Add a new pawn to the list.
Square lastSquare = pieceList[us][promotion][--pieceCount[us][promotion]];
index[lastSquare] = index[to];
pieceList[us][promotion][index[lastSquare]] = lastSquare;
pieceList[us][promotion][pieceCount[us][promotion]] = SQ_NONE;
index[to] = pieceCount[us][PAWN]++;
pieceList[us][PAWN][index[to]] = to;
remove_piece(to, us, promotion);
put_piece(to, us, PAWN);
pt = PAWN;
}
@@ -1013,21 +957,7 @@ void Position::undo_move(Move m) {
do_castle(to, from, rto, rfrom);
}
else
{
// Put the piece back at the source square
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
byTypeBB[ALL_PIECES] ^= from_to_bb;
byTypeBB[pt] ^= from_to_bb;
byColorBB[us] ^= from_to_bb;
board[to] = NO_PIECE;
board[from] = make_piece(us, pt);
// Update piece lists, index[to] is not updated and becomes stale. This
// works as long as index[] is accessed just by known occupied squares.
index[from] = index[to];
pieceList[us][pt][index[from]] = from;
}
move_piece(to, from, us, pt); // Put the piece back at the source square
if (capture)
{
@@ -1043,16 +973,7 @@ void Position::undo_move(Move m) {
assert(piece_on(capsq) == NO_PIECE);
}
// Restore the captured piece
byTypeBB[ALL_PIECES] |= capsq;
byTypeBB[capture] |= capsq;
byColorBB[them] |= capsq;
board[capsq] = make_piece(them, capture);
// Update piece list, add a new captured piece in capsq square
index[capsq] = pieceCount[them][capture]++;
pieceList[them][capture][index[capsq]] = capsq;
put_piece(capsq, them, capture); // Restore the captured piece
}
// Finally point our state pointer back to the previous state
@@ -1068,25 +989,12 @@ void Position::undo_move(Move m) {
void Position::do_castle(Square kfrom, Square kto, Square rfrom, Square rto) {
Color us = sideToMove;
Bitboard k_from_to_bb = SquareBB[kfrom] ^ SquareBB[kto];
Bitboard r_from_to_bb = SquareBB[rfrom] ^ SquareBB[rto];
byTypeBB[KING] ^= k_from_to_bb;
byTypeBB[ROOK] ^= r_from_to_bb;
byTypeBB[ALL_PIECES] ^= k_from_to_bb ^ r_from_to_bb;
byColorBB[us] ^= k_from_to_bb ^ r_from_to_bb;
// Could be from == to, so first set NO_PIECE then KING and ROOK
board[kfrom] = board[rfrom] = NO_PIECE;
board[kto] = make_piece(us, KING);
board[rto] = make_piece(us, ROOK);
// Could be kfrom == rto, so use a 'tmp' variable
int tmp = index[kfrom];
index[rto] = index[rfrom];
index[kto] = tmp;
pieceList[us][KING][index[kto]] = kto;
pieceList[us][ROOK][index[rto]] = rto;
// Remove both pieces first since squares could overlap in Chess960
remove_piece(kfrom, sideToMove, KING);
remove_piece(rfrom, sideToMove, ROOK);
board[kfrom] = board[rfrom] = NO_PIECE; // Since remove_piece doesn't do it for us
put_piece(kto, sideToMove, KING);
put_piece(rto, sideToMove, ROOK);
}
@@ -1097,7 +1005,7 @@ void Position::do_null_move(StateInfo& newSt) {
assert(!checkers());
memcpy(&newSt, st, sizeof(StateInfo)); // Fully copy here
std::memcpy(&newSt, st, sizeof(StateInfo)); // Fully copy here
newSt.previous = st;
st = &newSt;
@@ -1141,7 +1049,7 @@ int Position::see_sign(Move m) const {
// Early return if SEE cannot be negative because captured piece value
// is not less then capturing one. Note that king moves always return
// here because king midgame value is set to 0.
if (PieceValue[MG][piece_on(to_sq(m))] >= PieceValue[MG][piece_moved(m)])
if (PieceValue[MG][piece_moved(m)] <= PieceValue[MG][piece_on(to_sq(m))])
return 1;
return see(m);
@@ -1159,36 +1067,31 @@ int Position::see(Move m, int asymmThreshold) const {
from = from_sq(m);
to = to_sq(m);
captured = type_of(piece_on(to));
swapList[0] = PieceValue[MG][type_of(piece_on(to))];
stm = color_of(piece_on(from));
occupied = pieces() ^ from;
// Handle en passant moves
// Castle moves are implemented as king capturing the rook so cannot be
// handled correctly. Simply return 0 that is always the correct value
// unless in the rare case the rook ends up under attack.
if (type_of(m) == CASTLE)
return 0;
if (type_of(m) == ENPASSANT)
{
Square capQq = to - pawn_push(sideToMove);
assert(!captured);
assert(type_of(piece_on(capQq)) == PAWN);
// Remove the captured pawn
occupied ^= capQq;
captured = PAWN;
occupied ^= to - pawn_push(stm); // Remove the captured pawn
swapList[0] = PieceValue[MG][PAWN];
}
else if (type_of(m) == CASTLE)
// Castle moves are implemented as king capturing the rook so cannot be
// handled correctly. Simply return 0 that is always the correct value
// unless the rook is ends up under attack.
return 0;
// Find all attackers to the destination square, with the moving piece
// removed, but possibly an X-ray attacker added behind it.
attackers = attackers_to(to, occupied);
attackers = attackers_to(to, occupied) & occupied;
// If the opponent has no attackers we are finished
stm = ~color_of(piece_on(from));
stm = ~stm;
stmAttackers = attackers & pieces(stm);
if (!stmAttackers)
return PieceValue[MG][captured];
return swapList[0];
// The destination square is defended, which makes things rather more
// difficult to compute. We proceed by building up a "swap list" containing
@@ -1196,7 +1099,6 @@ int Position::see(Move m, int asymmThreshold) const {
// destination square, where the sides alternately capture, and always
// capture with the least valuable piece. After each capture, we look for
// new X-ray attacks from behind the capturing piece.
swapList[0] = PieceValue[MG][captured];
captured = type_of(piece_on(from));
do {
@@ -1206,19 +1108,15 @@ int Position::see(Move m, int asymmThreshold) const {
swapList[slIndex] = -swapList[slIndex - 1] + PieceValue[MG][captured];
slIndex++;
// Locate and remove from 'occupied' the next least valuable attacker
captured = next_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers);
attackers &= occupied; // Remove the just found attacker
// Locate and remove the next least valuable attacker
captured = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers);
stm = ~stm;
stmAttackers = attackers & pieces(stm);
if (captured == KING)
// Stop before processing a king capture
if (captured == KING && stmAttackers)
{
// Stop before processing a king capture
if (stmAttackers)
swapList[slIndex++] = QueenValueMg * 16;
swapList[slIndex++] = QueenValueMg * 16;
break;
}
@@ -1247,7 +1145,7 @@ int Position::see(Move m, int asymmThreshold) const {
void Position::clear() {
memset(this, 0, sizeof(Position));
std::memset(this, 0, sizeof(Position));
startState.epSquare = SQ_NONE;
st = &startState;
@@ -1257,24 +1155,6 @@ void Position::clear() {
}
/// Position::put_piece() puts a piece on the given square of the board,
/// updating the board array, pieces list, bitboards, and piece counts.
void Position::put_piece(Piece p, Square s) {
Color c = color_of(p);
PieceType pt = type_of(p);
board[s] = p;
index[s] = pieceCount[c][pt]++;
pieceList[c][pt][index[s]] = s;
byTypeBB[ALL_PIECES] |= s;
byTypeBB[pt] |= s;
byColorBB[c] |= s;
}
/// Position::compute_key() computes the hash key of the position. The hash
/// key is usually updated incrementally as moves are made and unmade, the
/// compute_key() function is only used when a new position is set up, and
@@ -1332,7 +1212,7 @@ Key Position::compute_material_key() const {
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= QUEEN; pt++)
for (int cnt = 0; cnt < piece_count(c, pt); cnt++)
for (int cnt = 0; cnt < pieceCount[c][pt]; cnt++)
k ^= Zobrist::psq[c][pt][cnt];
return k;
@@ -1350,7 +1230,8 @@ Score Position::compute_psq_score() const {
for (Bitboard b = pieces(); b; )
{
Square s = pop_lsb(&b);
score += pieceSquareTable[piece_on(s)][s];
Piece pc = piece_on(s);
score += psq[color_of(pc)][type_of(pc)][s];
}
return score;
@@ -1367,7 +1248,7 @@ Value Position::compute_non_pawn_material(Color c) const {
Value value = VALUE_ZERO;
for (PieceType pt = KNIGHT; pt <= QUEEN; pt++)
value += piece_count(c, pt) * PieceValue[MG][pt];
value += pieceCount[c][pt] * PieceValue[MG][pt];
return value;
}
@@ -1412,42 +1293,36 @@ bool Position::is_draw() const {
/// Position::flip() flips position with the white and black sides reversed. This
/// is only useful for debugging especially for finding evaluation symmetry bugs.
static char toggle_case(char c) {
return char(islower(c) ? toupper(c) : tolower(c));
}
void Position::flip() {
const Position pos(*this);
string f, token;
std::stringstream ss(fen());
clear();
for (Rank rank = RANK_8; rank >= RANK_1; rank--) // Piece placement
{
std::getline(ss, token, rank > RANK_1 ? '/' : ' ');
f.insert(0, token + (f.empty() ? " " : "/"));
}
sideToMove = ~pos.side_to_move();
thisThread = pos.this_thread();
nodes = pos.nodes_searched();
chess960 = pos.is_chess960();
gamePly = pos.game_ply();
ss >> token; // Active color
f += (token == "w" ? "B " : "W "); // Will be lowercased later
for (Square s = SQ_A1; s <= SQ_H8; s++)
if (!pos.is_empty(s))
put_piece(Piece(pos.piece_on(s) ^ 8), ~s);
ss >> token; // Castling availability
f += token + " ";
if (pos.can_castle(WHITE_OO))
set_castle_right(BLACK, ~pos.castle_rook_square(WHITE, KING_SIDE));
if (pos.can_castle(WHITE_OOO))
set_castle_right(BLACK, ~pos.castle_rook_square(WHITE, QUEEN_SIDE));
if (pos.can_castle(BLACK_OO))
set_castle_right(WHITE, ~pos.castle_rook_square(BLACK, KING_SIDE));
if (pos.can_castle(BLACK_OOO))
set_castle_right(WHITE, ~pos.castle_rook_square(BLACK, QUEEN_SIDE));
std::transform(f.begin(), f.end(), f.begin(), toggle_case);
if (pos.st->epSquare != SQ_NONE)
st->epSquare = ~pos.st->epSquare;
ss >> token; // En passant square
f += (token == "-" ? token : token.replace(1, 1, token[1] == '3' ? "6" : "3"));
st->checkersBB = attackers_to(king_square(sideToMove)) & pieces(~sideToMove);
std::getline(ss, token); // Half and full moves
f += token;
st->key = compute_key();
st->pawnKey = compute_pawn_key();
st->materialKey = compute_material_key();
st->psqScore = compute_psq_score();
st->npMaterial[WHITE] = compute_non_pawn_material(WHITE);
st->npMaterial[BLACK] = compute_non_pawn_material(BLACK);
set(f, is_chess960(), this_thread());
assert(pos_is_ok());
}
@@ -1536,15 +1411,13 @@ bool Position::pos_is_ok(int* failedStep) const {
if ((*step)++, debugMaterialKey && st->materialKey != compute_material_key())
return false;
if ((*step)++, debugIncrementalEval && st->psqScore != compute_psq_score())
if ((*step)++, debugIncrementalEval && st->psq != compute_psq_score())
return false;
if ((*step)++, debugNonPawnMaterial)
{
if ( st->npMaterial[WHITE] != compute_non_pawn_material(WHITE)
|| st->npMaterial[BLACK] != compute_non_pawn_material(BLACK))
return false;
}
if ((*step)++, debugPieceCounts)
for (Color c = WHITE; c <= BLACK; c++)
@@ -1556,14 +1429,10 @@ bool Position::pos_is_ok(int* failedStep) const {
for (Color c = WHITE; c <= BLACK; c++)
for (PieceType pt = PAWN; pt <= KING; pt++)
for (int i = 0; i < pieceCount[c][pt]; i++)
{
if (piece_on(piece_list(c, pt)[i]) != make_piece(c, pt))
if ( board[pieceList[c][pt][i]] != make_piece(c, pt)
|| index[pieceList[c][pt][i]] != i)
return false;
if (index[piece_list(c, pt)[i]] != i)
return false;
}
if ((*step)++, debugCastleSquares)
for (Color c = WHITE; c <= BLACK; c++)
for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))
@@ -1573,10 +1442,8 @@ bool Position::pos_is_ok(int* failedStep) const {
if (!can_castle(cr))
continue;
if ((castleRightsMask[king_square(c)] & cr) != cr)
return false;
if ( piece_on(castleRookSquare[c][s]) != make_piece(c, ROOK)
if ( (castleRightsMask[king_square(c)] & cr) != cr
|| piece_on(castleRookSquare[c][s]) != make_piece(c, ROOK)
|| castleRightsMask[castleRookSquare[c][s]] != cr)
return false;
}