mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-13 09:32:39 +01:00
DroidFish: Updated stockfish to a development version to fix problems on quad-core ARM CPUs.
This commit is contained in:
@@ -17,6 +17,7 @@
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <iostream>
|
||||
|
||||
#include "movegen.h"
|
||||
@@ -31,225 +32,261 @@ ThreadsManager Threads; // Global object
|
||||
namespace { extern "C" {
|
||||
|
||||
// start_routine() is the C function which is called when a new thread
|
||||
// is launched. It simply calls idle_loop() of the supplied thread. The first
|
||||
// and last thread are special. First one is the main search thread while the
|
||||
// last one mimics a timer, they run in main_loop() and timer_loop().
|
||||
// is launched. It is a wrapper to member function pointed by start_fn.
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
DWORD WINAPI start_routine(LPVOID thread) {
|
||||
#else
|
||||
void* start_routine(void* thread) {
|
||||
#endif
|
||||
|
||||
Thread* th = (Thread*)thread;
|
||||
|
||||
if (th->threadID == 0)
|
||||
th->main_loop();
|
||||
|
||||
else if (th->threadID == MAX_THREADS)
|
||||
th->timer_loop();
|
||||
|
||||
else
|
||||
th->idle_loop(NULL);
|
||||
|
||||
return 0;
|
||||
}
|
||||
long start_routine(Thread* th) { (th->*(th->start_fn))(); return 0; }
|
||||
|
||||
} }
|
||||
|
||||
|
||||
// wake_up() wakes up the thread, normally at the beginning of the search or,
|
||||
// if "sleeping threads" is used, when there is some work to do.
|
||||
// Thread c'tor starts a newly-created thread of execution that will call
|
||||
// the idle loop function pointed by start_fn going immediately to sleep.
|
||||
|
||||
void Thread::wake_up() {
|
||||
Thread::Thread(Fn fn) {
|
||||
|
||||
lock_grab(&sleepLock);
|
||||
cond_signal(&sleepCond);
|
||||
lock_release(&sleepLock);
|
||||
is_searching = do_exit = false;
|
||||
maxPly = splitPointsCnt = 0;
|
||||
curSplitPoint = NULL;
|
||||
start_fn = fn;
|
||||
idx = Threads.size();
|
||||
|
||||
do_sleep = (fn != &Thread::main_loop); // Avoid a race with start_searching()
|
||||
|
||||
lock_init(sleepLock);
|
||||
cond_init(sleepCond);
|
||||
|
||||
for (int j = 0; j < MAX_SPLITPOINTS_PER_THREAD; j++)
|
||||
lock_init(splitPoints[j].lock);
|
||||
|
||||
if (!thread_create(handle, start_routine, this))
|
||||
{
|
||||
std::cerr << "Failed to create thread number " << idx << std::endl;
|
||||
::exit(EXIT_FAILURE);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// cutoff_occurred() checks whether a beta cutoff has occurred in the current
|
||||
// active split point, or in some ancestor of the split point.
|
||||
// Thread d'tor waits for thread termination before to return.
|
||||
|
||||
Thread::~Thread() {
|
||||
|
||||
assert(do_sleep);
|
||||
|
||||
do_exit = true; // Search must be already finished
|
||||
wake_up();
|
||||
|
||||
thread_join(handle); // Wait for thread termination
|
||||
|
||||
lock_destroy(sleepLock);
|
||||
cond_destroy(sleepCond);
|
||||
|
||||
for (int j = 0; j < MAX_SPLITPOINTS_PER_THREAD; j++)
|
||||
lock_destroy(splitPoints[j].lock);
|
||||
}
|
||||
|
||||
|
||||
// Thread::timer_loop() is where the timer thread waits maxPly milliseconds and
|
||||
// then calls check_time(). If maxPly is 0 thread sleeps until is woken up.
|
||||
extern void check_time();
|
||||
|
||||
void Thread::timer_loop() {
|
||||
|
||||
while (!do_exit)
|
||||
{
|
||||
lock_grab(sleepLock);
|
||||
timed_wait(sleepCond, sleepLock, maxPly ? maxPly : INT_MAX);
|
||||
lock_release(sleepLock);
|
||||
check_time();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Thread::main_loop() is where the main thread is parked waiting to be started
|
||||
// when there is a new search. Main thread will launch all the slave threads.
|
||||
|
||||
void Thread::main_loop() {
|
||||
|
||||
while (true)
|
||||
{
|
||||
lock_grab(sleepLock);
|
||||
|
||||
do_sleep = true; // Always return to sleep after a search
|
||||
is_searching = false;
|
||||
|
||||
while (do_sleep && !do_exit)
|
||||
{
|
||||
cond_signal(Threads.sleepCond); // Wake up UI thread if needed
|
||||
cond_wait(sleepCond, sleepLock);
|
||||
}
|
||||
|
||||
lock_release(sleepLock);
|
||||
|
||||
if (do_exit)
|
||||
return;
|
||||
|
||||
is_searching = true;
|
||||
|
||||
Search::think();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Thread::wake_up() wakes up the thread, normally at the beginning of the search
|
||||
// or, if "sleeping threads" is used at split time.
|
||||
|
||||
void Thread::wake_up() {
|
||||
|
||||
lock_grab(sleepLock);
|
||||
cond_signal(sleepCond);
|
||||
lock_release(sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// Thread::wait_for_stop_or_ponderhit() is called when the maximum depth is
|
||||
// reached while the program is pondering. The point is to work around a wrinkle
|
||||
// in the UCI protocol: When pondering, the engine is not allowed to give a
|
||||
// "bestmove" before the GUI sends it a "stop" or "ponderhit" command. We simply
|
||||
// wait here until one of these commands (that raise StopRequest) is sent and
|
||||
// then return, after which the bestmove and pondermove will be printed.
|
||||
|
||||
void Thread::wait_for_stop_or_ponderhit() {
|
||||
|
||||
Signals.stopOnPonderhit = true;
|
||||
|
||||
lock_grab(sleepLock);
|
||||
while (!Signals.stop) cond_wait(sleepCond, sleepLock);
|
||||
lock_release(sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// Thread::cutoff_occurred() checks whether a beta cutoff has occurred in the
|
||||
// current active split point, or in some ancestor of the split point.
|
||||
|
||||
bool Thread::cutoff_occurred() const {
|
||||
|
||||
for (SplitPoint* sp = splitPoint; sp; sp = sp->parent)
|
||||
if (sp->is_betaCutoff)
|
||||
for (SplitPoint* sp = curSplitPoint; sp; sp = sp->parent)
|
||||
if (sp->cutoff)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// is_available_to() checks whether the thread is available to help the thread with
|
||||
// threadID "master" at a split point. An obvious requirement is that thread must be
|
||||
// idle. With more than two threads, this is not by itself sufficient: If the thread
|
||||
// is the master of some active split point, it is only available as a slave to the
|
||||
// threads which are busy searching the split point at the top of "slave"'s split
|
||||
// Thread::is_available_to() checks whether the thread is available to help the
|
||||
// thread 'master' at a split point. An obvious requirement is that thread must
|
||||
// be idle. With more than two threads, this is not sufficient: If the thread is
|
||||
// the master of some active split point, it is only available as a slave to the
|
||||
// slaves which are busy searching the split point at the top of slaves split
|
||||
// point stack (the "helpful master concept" in YBWC terminology).
|
||||
|
||||
bool Thread::is_available_to(int master) const {
|
||||
bool Thread::is_available_to(Thread* master) const {
|
||||
|
||||
if (is_searching)
|
||||
return false;
|
||||
|
||||
// Make a local copy to be sure doesn't become zero under our feet while
|
||||
// testing next condition and so leading to an out of bound access.
|
||||
int localActiveSplitPoints = activeSplitPoints;
|
||||
int spCnt = splitPointsCnt;
|
||||
|
||||
// No active split points means that the thread is available as a slave for any
|
||||
// other thread otherwise apply the "helpful master" concept if possible.
|
||||
if ( !localActiveSplitPoints
|
||||
|| splitPoints[localActiveSplitPoints - 1].is_slave[master])
|
||||
return true;
|
||||
|
||||
return false;
|
||||
return !spCnt || (splitPoints[spCnt - 1].slavesMask & (1ULL << master->idx));
|
||||
}
|
||||
|
||||
|
||||
// read_uci_options() updates number of active threads and other parameters
|
||||
// according to the UCI options values. It is called before to start a new search.
|
||||
// init() is called at startup. Initializes lock and condition variable and
|
||||
// launches requested threads sending them immediately to sleep. We cannot use
|
||||
// a c'tor becuase Threads is a static object and we need a fully initialized
|
||||
// engine at this point due to allocation of endgames in Thread c'tor.
|
||||
|
||||
void ThreadsManager::init() {
|
||||
|
||||
cond_init(sleepCond);
|
||||
lock_init(splitLock);
|
||||
timer = new Thread(&Thread::timer_loop);
|
||||
threads.push_back(new Thread(&Thread::main_loop));
|
||||
read_uci_options();
|
||||
}
|
||||
|
||||
|
||||
// d'tor cleanly terminates the threads when the program exits.
|
||||
|
||||
ThreadsManager::~ThreadsManager() {
|
||||
|
||||
for (int i = 0; i < size(); i++)
|
||||
delete threads[i];
|
||||
|
||||
delete timer;
|
||||
lock_destroy(splitLock);
|
||||
cond_destroy(sleepCond);
|
||||
}
|
||||
|
||||
|
||||
// read_uci_options() updates internal threads parameters from the corresponding
|
||||
// UCI options and creates/destroys threads to match the requested number. Thread
|
||||
// objects are dynamically allocated to avoid creating in advance all possible
|
||||
// threads, with included pawns and material tables, if only few are used.
|
||||
|
||||
void ThreadsManager::read_uci_options() {
|
||||
|
||||
maxThreadsPerSplitPoint = Options["Max Threads per Split Point"];
|
||||
minimumSplitDepth = Options["Min Split Depth"] * ONE_PLY;
|
||||
useSleepingThreads = Options["Use Sleeping Threads"];
|
||||
int requested = Options["Threads"];
|
||||
|
||||
set_size(Options["Threads"]);
|
||||
}
|
||||
assert(requested > 0);
|
||||
|
||||
while (size() < requested)
|
||||
threads.push_back(new Thread(&Thread::idle_loop));
|
||||
|
||||
// set_size() changes the number of active threads and raises do_sleep flag for
|
||||
// all the unused threads that will go immediately to sleep.
|
||||
|
||||
void ThreadsManager::set_size(int cnt) {
|
||||
|
||||
assert(cnt > 0 && cnt <= MAX_THREADS);
|
||||
|
||||
activeThreads = cnt;
|
||||
|
||||
for (int i = 1; i < MAX_THREADS; i++) // Ignore main thread
|
||||
if (i < activeThreads)
|
||||
{
|
||||
// Dynamically allocate pawn and material hash tables according to the
|
||||
// number of active threads. This avoids preallocating memory for all
|
||||
// possible threads if only few are used.
|
||||
threads[i].pawnTable.init();
|
||||
threads[i].materialTable.init();
|
||||
|
||||
threads[i].do_sleep = false;
|
||||
}
|
||||
else
|
||||
threads[i].do_sleep = true;
|
||||
}
|
||||
|
||||
|
||||
// init() is called during startup. Initializes locks and condition variables
|
||||
// and launches all threads sending them immediately to sleep.
|
||||
|
||||
void ThreadsManager::init() {
|
||||
|
||||
// Initialize sleep condition and lock used by thread manager
|
||||
cond_init(&sleepCond);
|
||||
lock_init(&threadsLock);
|
||||
|
||||
// Initialize thread's sleep conditions and split point locks
|
||||
for (int i = 0; i <= MAX_THREADS; i++)
|
||||
while (size() > requested)
|
||||
{
|
||||
lock_init(&threads[i].sleepLock);
|
||||
cond_init(&threads[i].sleepCond);
|
||||
|
||||
for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
|
||||
lock_init(&(threads[i].splitPoints[j].lock));
|
||||
}
|
||||
|
||||
// Allocate main thread tables to call evaluate() also when not searching
|
||||
threads[0].pawnTable.init();
|
||||
threads[0].materialTable.init();
|
||||
|
||||
// Create and launch all the threads, threads will go immediately to sleep
|
||||
for (int i = 0; i <= MAX_THREADS; i++)
|
||||
{
|
||||
threads[i].is_searching = false;
|
||||
threads[i].do_sleep = (i != 0); // Avoid a race with start_thinking()
|
||||
threads[i].threadID = i;
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
threads[i].handle = CreateThread(NULL, 0, start_routine, &threads[i], 0, NULL);
|
||||
bool ok = (threads[i].handle != NULL);
|
||||
#else
|
||||
bool ok = !pthread_create(&threads[i].handle, NULL, start_routine, &threads[i]);
|
||||
#endif
|
||||
|
||||
if (!ok)
|
||||
{
|
||||
std::cerr << "Failed to create thread number " << i << std::endl;
|
||||
::exit(EXIT_FAILURE);
|
||||
}
|
||||
delete threads.back();
|
||||
threads.pop_back();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// exit() is called to cleanly terminate the threads when the program finishes
|
||||
// wake_up() is called before a new search to start the threads that are waiting
|
||||
// on the sleep condition and to reset maxPly. When useSleepingThreads is set
|
||||
// threads will be woken up at split time.
|
||||
|
||||
void ThreadsManager::exit() {
|
||||
void ThreadsManager::wake_up() const {
|
||||
|
||||
for (int i = 0; i <= MAX_THREADS; i++)
|
||||
for (int i = 0; i < size(); i++)
|
||||
{
|
||||
threads[i].do_terminate = true; // Search must be already finished
|
||||
threads[i].wake_up();
|
||||
threads[i]->maxPly = 0;
|
||||
threads[i]->do_sleep = false;
|
||||
|
||||
// Wait for thread termination
|
||||
#if defined(_MSC_VER)
|
||||
WaitForSingleObject(threads[i].handle, INFINITE);
|
||||
CloseHandle(threads[i].handle);
|
||||
#else
|
||||
pthread_join(threads[i].handle, NULL);
|
||||
#endif
|
||||
|
||||
// Now we can safely destroy associated locks and wait conditions
|
||||
lock_destroy(&threads[i].sleepLock);
|
||||
cond_destroy(&threads[i].sleepCond);
|
||||
|
||||
for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
|
||||
lock_destroy(&(threads[i].splitPoints[j].lock));
|
||||
if (!useSleepingThreads)
|
||||
threads[i]->wake_up();
|
||||
}
|
||||
}
|
||||
|
||||
lock_destroy(&threadsLock);
|
||||
cond_destroy(&sleepCond);
|
||||
|
||||
// sleep() is called after the search finishes to ask all the threads but the
|
||||
// main one to go waiting on a sleep condition.
|
||||
|
||||
void ThreadsManager::sleep() const {
|
||||
|
||||
for (int i = 1; i < size(); i++) // Main thread will go to sleep by itself
|
||||
threads[i]->do_sleep = true; // to avoid a race with start_searching()
|
||||
}
|
||||
|
||||
|
||||
// available_slave_exists() tries to find an idle thread which is available as
|
||||
// a slave for the thread with threadID 'master'.
|
||||
// a slave for the thread 'master'.
|
||||
|
||||
bool ThreadsManager::available_slave_exists(int master) const {
|
||||
bool ThreadsManager::available_slave_exists(Thread* master) const {
|
||||
|
||||
assert(master >= 0 && master < activeThreads);
|
||||
|
||||
for (int i = 0; i < activeThreads; i++)
|
||||
if (threads[i].is_available_to(master))
|
||||
for (int i = 0; i < size(); i++)
|
||||
if (threads[i]->is_available_to(master))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// split_point_finished() checks if all the slave threads of a given split
|
||||
// point have finished searching.
|
||||
|
||||
bool ThreadsManager::split_point_finished(SplitPoint* sp) const {
|
||||
|
||||
for (int i = 0; i < activeThreads; i++)
|
||||
if (sp->is_slave[i])
|
||||
return false;
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
// split() does the actual work of distributing the work at a node between
|
||||
// several available threads. If it does not succeed in splitting the node
|
||||
// (because no idle threads are available, or because we have no unused split
|
||||
@@ -261,32 +298,29 @@ bool ThreadsManager::split_point_finished(SplitPoint* sp) const {
|
||||
|
||||
template <bool Fake>
|
||||
Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta,
|
||||
Value bestValue, Depth depth, Move threatMove,
|
||||
int moveCount, MovePicker* mp, int nodeType) {
|
||||
Value bestValue, Move* bestMove, Depth depth,
|
||||
Move threatMove, int moveCount, MovePicker* mp, int nodeType) {
|
||||
assert(pos.pos_is_ok());
|
||||
assert(bestValue > -VALUE_INFINITE);
|
||||
assert(bestValue <= alpha);
|
||||
assert(alpha < beta);
|
||||
assert(beta <= VALUE_INFINITE);
|
||||
assert(depth > DEPTH_ZERO);
|
||||
assert(pos.thread() >= 0 && pos.thread() < activeThreads);
|
||||
assert(activeThreads > 1);
|
||||
|
||||
int i, master = pos.thread();
|
||||
Thread& masterThread = threads[master];
|
||||
Thread* master = pos.this_thread();
|
||||
|
||||
// If we already have too many active split points, don't split
|
||||
if (masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
|
||||
if (master->splitPointsCnt >= MAX_SPLITPOINTS_PER_THREAD)
|
||||
return bestValue;
|
||||
|
||||
// Pick the next available split point from the split point stack
|
||||
SplitPoint* sp = &masterThread.splitPoints[masterThread.activeSplitPoints];
|
||||
SplitPoint* sp = &master->splitPoints[master->splitPointsCnt];
|
||||
|
||||
// Initialize the split point
|
||||
sp->parent = masterThread.splitPoint;
|
||||
sp->parent = master->curSplitPoint;
|
||||
sp->master = master;
|
||||
sp->is_betaCutoff = false;
|
||||
sp->cutoff = false;
|
||||
sp->slavesMask = 1ULL << master->idx;
|
||||
sp->depth = depth;
|
||||
sp->bestMove = *bestMove;
|
||||
sp->threatMove = threatMove;
|
||||
sp->alpha = alpha;
|
||||
sp->beta = beta;
|
||||
@@ -298,88 +332,71 @@ Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta,
|
||||
sp->nodes = 0;
|
||||
sp->ss = ss;
|
||||
|
||||
for (i = 0; i < activeThreads; i++)
|
||||
sp->is_slave[i] = false;
|
||||
assert(master->is_searching);
|
||||
|
||||
// If we are here it means we are not available
|
||||
assert(masterThread.is_searching);
|
||||
|
||||
int workersCnt = 1; // At least the master is included
|
||||
master->curSplitPoint = sp;
|
||||
int slavesCnt = 0;
|
||||
|
||||
// Try to allocate available threads and ask them to start searching setting
|
||||
// is_searching flag. This must be done under lock protection to avoid concurrent
|
||||
// allocation of the same slave by another master.
|
||||
lock_grab(&threadsLock);
|
||||
lock_grab(sp->lock);
|
||||
lock_grab(splitLock);
|
||||
|
||||
for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++)
|
||||
if (threads[i].is_available_to(master))
|
||||
for (int i = 0; i < size() && !Fake; ++i)
|
||||
if (threads[i]->is_available_to(master))
|
||||
{
|
||||
workersCnt++;
|
||||
sp->is_slave[i] = true;
|
||||
threads[i].splitPoint = sp;
|
||||
|
||||
// This makes the slave to exit from idle_loop()
|
||||
threads[i].is_searching = true;
|
||||
sp->slavesMask |= 1ULL << i;
|
||||
threads[i]->curSplitPoint = sp;
|
||||
threads[i]->is_searching = true; // Slave leaves idle_loop()
|
||||
|
||||
if (useSleepingThreads)
|
||||
threads[i].wake_up();
|
||||
threads[i]->wake_up();
|
||||
|
||||
if (++slavesCnt + 1 >= maxThreadsPerSplitPoint) // Master is always included
|
||||
break;
|
||||
}
|
||||
|
||||
lock_release(&threadsLock);
|
||||
master->splitPointsCnt++;
|
||||
|
||||
// We failed to allocate even one slave, return
|
||||
if (!Fake && workersCnt == 1)
|
||||
return bestValue;
|
||||
|
||||
masterThread.splitPoint = sp;
|
||||
masterThread.activeSplitPoints++;
|
||||
lock_release(splitLock);
|
||||
lock_release(sp->lock);
|
||||
|
||||
// Everything is set up. The master thread enters the idle loop, from which
|
||||
// it will instantly launch a search, because its is_searching flag is set.
|
||||
// We pass the split point as a parameter to the idle loop, which means that
|
||||
// the thread will return from the idle loop when all slaves have finished
|
||||
// their work at this split point.
|
||||
masterThread.idle_loop(sp);
|
||||
if (slavesCnt || Fake)
|
||||
{
|
||||
master->idle_loop(sp);
|
||||
|
||||
// In helpful master concept a master can help only a sub-tree of its split
|
||||
// point, and because here is all finished is not possible master is booked.
|
||||
assert(!masterThread.is_searching);
|
||||
// In helpful master concept a master can help only a sub-tree of its split
|
||||
// point, and because here is all finished is not possible master is booked.
|
||||
assert(!master->is_searching);
|
||||
}
|
||||
|
||||
// We have returned from the idle loop, which means that all threads are
|
||||
// finished. Note that changing state and decreasing activeSplitPoints is done
|
||||
// under lock protection to avoid a race with Thread::is_available_to().
|
||||
lock_grab(&threadsLock);
|
||||
// finished. Note that setting is_searching and decreasing splitPointsCnt is
|
||||
// done under lock protection to avoid a race with Thread::is_available_to().
|
||||
lock_grab(sp->lock); // To protect sp->nodes
|
||||
lock_grab(splitLock);
|
||||
|
||||
masterThread.is_searching = true;
|
||||
masterThread.activeSplitPoints--;
|
||||
|
||||
lock_release(&threadsLock);
|
||||
|
||||
masterThread.splitPoint = sp->parent;
|
||||
master->is_searching = true;
|
||||
master->splitPointsCnt--;
|
||||
master->curSplitPoint = sp->parent;
|
||||
pos.set_nodes_searched(pos.nodes_searched() + sp->nodes);
|
||||
*bestMove = sp->bestMove;
|
||||
|
||||
lock_release(splitLock);
|
||||
lock_release(sp->lock);
|
||||
|
||||
return sp->bestValue;
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template Value ThreadsManager::split<false>(Position&, Stack*, Value, Value, Value, Depth, Move, int, MovePicker*, int);
|
||||
template Value ThreadsManager::split<true>(Position&, Stack*, Value, Value, Value, Depth, Move, int, MovePicker*, int);
|
||||
|
||||
|
||||
// Thread::timer_loop() is where the timer thread waits maxPly milliseconds and
|
||||
// then calls do_timer_event(). If maxPly is 0 thread sleeps until is woken up.
|
||||
extern void check_time();
|
||||
|
||||
void Thread::timer_loop() {
|
||||
|
||||
while (!do_terminate)
|
||||
{
|
||||
lock_grab(&sleepLock);
|
||||
timed_wait(&sleepCond, &sleepLock, maxPly ? maxPly : INT_MAX);
|
||||
lock_release(&sleepLock);
|
||||
check_time();
|
||||
}
|
||||
}
|
||||
template Value ThreadsManager::split<false>(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker*, int);
|
||||
template Value ThreadsManager::split<true>(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker*, int);
|
||||
|
||||
|
||||
// ThreadsManager::set_timer() is used to set the timer to trigger after msec
|
||||
@@ -387,124 +404,46 @@ void Thread::timer_loop() {
|
||||
|
||||
void ThreadsManager::set_timer(int msec) {
|
||||
|
||||
Thread& timer = threads[MAX_THREADS];
|
||||
|
||||
lock_grab(&timer.sleepLock);
|
||||
timer.maxPly = msec;
|
||||
cond_signal(&timer.sleepCond); // Wake up and restart the timer
|
||||
lock_release(&timer.sleepLock);
|
||||
lock_grab(timer->sleepLock);
|
||||
timer->maxPly = msec;
|
||||
cond_signal(timer->sleepCond); // Wake up and restart the timer
|
||||
lock_release(timer->sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// Thread::main_loop() is where the main thread is parked waiting to be started
|
||||
// when there is a new search. Main thread will launch all the slave threads.
|
||||
// ThreadsManager::wait_for_search_finished() waits for main thread to go to
|
||||
// sleep, this means search is finished. Then returns.
|
||||
|
||||
void Thread::main_loop() {
|
||||
void ThreadsManager::wait_for_search_finished() {
|
||||
|
||||
while (true)
|
||||
{
|
||||
lock_grab(&sleepLock);
|
||||
|
||||
do_sleep = true; // Always return to sleep after a search
|
||||
is_searching = false;
|
||||
|
||||
while (do_sleep && !do_terminate)
|
||||
{
|
||||
cond_signal(&Threads.sleepCond); // Wake up UI thread if needed
|
||||
cond_wait(&sleepCond, &sleepLock);
|
||||
}
|
||||
|
||||
is_searching = true;
|
||||
|
||||
lock_release(&sleepLock);
|
||||
|
||||
if (do_terminate)
|
||||
return;
|
||||
|
||||
Search::think();
|
||||
}
|
||||
Thread* t = main_thread();
|
||||
lock_grab(t->sleepLock);
|
||||
cond_signal(t->sleepCond); // In case is waiting for stop or ponderhit
|
||||
while (!t->do_sleep) cond_wait(sleepCond, t->sleepLock);
|
||||
lock_release(t->sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// ThreadsManager::start_thinking() is used by UI thread to wake up the main
|
||||
// thread parked in main_loop() and starting a new search. If asyncMode is true
|
||||
// then function returns immediately, otherwise caller is blocked waiting for
|
||||
// the search to finish.
|
||||
// ThreadsManager::start_searching() wakes up the main thread sleeping in
|
||||
// main_loop() so to start a new search, then returns immediately.
|
||||
|
||||
void ThreadsManager::start_thinking(const Position& pos, const LimitsType& limits,
|
||||
const std::set<Move>& searchMoves, bool async) {
|
||||
Thread& main = threads[0];
|
||||
void ThreadsManager::start_searching(const Position& pos, const LimitsType& limits,
|
||||
const std::vector<Move>& searchMoves) {
|
||||
wait_for_search_finished();
|
||||
|
||||
lock_grab(&main.sleepLock);
|
||||
SearchTime.restart(); // As early as possible
|
||||
|
||||
// Wait main thread has finished before to launch a new search
|
||||
while (!main.do_sleep)
|
||||
cond_wait(&sleepCond, &main.sleepLock);
|
||||
|
||||
// Copy input arguments to initialize the search
|
||||
RootPosition.copy(pos, 0);
|
||||
Limits = limits;
|
||||
RootMoves.clear();
|
||||
|
||||
// Populate RootMoves with all the legal moves (default) or, if a searchMoves
|
||||
// set is given, with the subset of legal moves to search.
|
||||
for (MoveList<MV_LEGAL> ml(pos); !ml.end(); ++ml)
|
||||
if (searchMoves.empty() || searchMoves.count(ml.move()))
|
||||
RootMoves.push_back(RootMove(ml.move()));
|
||||
|
||||
// Reset signals before to start the new search
|
||||
Signals.stopOnPonderhit = Signals.firstRootMove = false;
|
||||
Signals.stop = Signals.failedLowAtRoot = false;
|
||||
|
||||
main.do_sleep = false;
|
||||
cond_signal(&main.sleepCond); // Wake up main thread and start searching
|
||||
RootPosition = pos;
|
||||
Limits = limits;
|
||||
RootMoves.clear();
|
||||
|
||||
if (!async)
|
||||
while (!main.do_sleep)
|
||||
cond_wait(&sleepCond, &main.sleepLock);
|
||||
for (MoveList<MV_LEGAL> ml(pos); !ml.end(); ++ml)
|
||||
if (searchMoves.empty() || std::count(searchMoves.begin(), searchMoves.end(), ml.move()))
|
||||
RootMoves.push_back(RootMove(ml.move()));
|
||||
|
||||
lock_release(&main.sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// ThreadsManager::stop_thinking() is used by UI thread to raise a stop request
|
||||
// and to wait for the main thread finishing the search. Needed to wait exiting
|
||||
// and terminate the threads after a 'quit' command.
|
||||
|
||||
void ThreadsManager::stop_thinking() {
|
||||
|
||||
Thread& main = threads[0];
|
||||
|
||||
Search::Signals.stop = true;
|
||||
|
||||
lock_grab(&main.sleepLock);
|
||||
|
||||
cond_signal(&main.sleepCond); // In case is waiting for stop or ponderhit
|
||||
|
||||
while (!main.do_sleep)
|
||||
cond_wait(&sleepCond, &main.sleepLock);
|
||||
|
||||
lock_release(&main.sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// ThreadsManager::wait_for_stop_or_ponderhit() is called when the maximum depth
|
||||
// is reached while the program is pondering. The point is to work around a wrinkle
|
||||
// in the UCI protocol: When pondering, the engine is not allowed to give a
|
||||
// "bestmove" before the GUI sends it a "stop" or "ponderhit" command. We simply
|
||||
// wait here until one of these commands (that raise StopRequest) is sent and
|
||||
// then return, after which the bestmove and pondermove will be printed.
|
||||
|
||||
void ThreadsManager::wait_for_stop_or_ponderhit() {
|
||||
|
||||
Signals.stopOnPonderhit = true;
|
||||
|
||||
Thread& main = threads[0];
|
||||
|
||||
lock_grab(&main.sleepLock);
|
||||
|
||||
while (!Signals.stop)
|
||||
cond_wait(&main.sleepCond, &main.sleepLock);
|
||||
|
||||
lock_release(&main.sleepLock);
|
||||
main_thread()->do_sleep = false;
|
||||
main_thread()->wake_up();
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user