mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-12 09:02:41 +01:00
DroidFish: Updated stockfish to a development version to fix problems on quad-core ARM CPUs.
This commit is contained in:
@@ -17,9 +17,9 @@
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <algorithm>
|
||||
|
||||
#include "material.h"
|
||||
|
||||
@@ -84,67 +84,57 @@ namespace {
|
||||
} // namespace
|
||||
|
||||
|
||||
/// MaterialInfoTable c'tor and d'tor allocate and free the space for Endgames
|
||||
/// MaterialTable::probe() takes a position object as input, looks up a MaterialEntry
|
||||
/// object, and returns a pointer to it. If the material configuration is not
|
||||
/// already present in the table, it is computed and stored there, so we don't
|
||||
/// have to recompute everything when the same material configuration occurs again.
|
||||
|
||||
void MaterialInfoTable::init() { Base::init(); if (!funcs) funcs = new Endgames(); }
|
||||
MaterialInfoTable::~MaterialInfoTable() { delete funcs; }
|
||||
|
||||
|
||||
/// MaterialInfoTable::material_info() takes a position object as input,
|
||||
/// computes or looks up a MaterialInfo object, and returns a pointer to it.
|
||||
/// If the material configuration is not already present in the table, it
|
||||
/// is stored there, so we don't have to recompute everything when the
|
||||
/// same material configuration occurs again.
|
||||
|
||||
MaterialInfo* MaterialInfoTable::material_info(const Position& pos) const {
|
||||
MaterialEntry* MaterialTable::probe(const Position& pos) {
|
||||
|
||||
Key key = pos.material_key();
|
||||
MaterialInfo* mi = probe(key);
|
||||
MaterialEntry* e = entries[key];
|
||||
|
||||
// If mi->key matches the position's material hash key, it means that we
|
||||
// If e->key matches the position's material hash key, it means that we
|
||||
// have analysed this material configuration before, and we can simply
|
||||
// return the information we found the last time instead of recomputing it.
|
||||
if (mi->key == key)
|
||||
return mi;
|
||||
if (e->key == key)
|
||||
return e;
|
||||
|
||||
// Initialize MaterialInfo entry
|
||||
memset(mi, 0, sizeof(MaterialInfo));
|
||||
mi->key = key;
|
||||
mi->factor[WHITE] = mi->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
|
||||
|
||||
// Store game phase
|
||||
mi->gamePhase = MaterialInfoTable::game_phase(pos);
|
||||
memset(e, 0, sizeof(MaterialEntry));
|
||||
e->key = key;
|
||||
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
|
||||
e->gamePhase = MaterialTable::game_phase(pos);
|
||||
|
||||
// Let's look if we have a specialized evaluation function for this
|
||||
// particular material configuration. First we look for a fixed
|
||||
// configuration one, then a generic one if previous search failed.
|
||||
if ((mi->evaluationFunction = funcs->get<Value>(key)) != NULL)
|
||||
return mi;
|
||||
if (endgames.probe(key, e->evaluationFunction))
|
||||
return e;
|
||||
|
||||
if (is_KXK<WHITE>(pos))
|
||||
{
|
||||
mi->evaluationFunction = &EvaluateKXK[WHITE];
|
||||
return mi;
|
||||
e->evaluationFunction = &EvaluateKXK[WHITE];
|
||||
return e;
|
||||
}
|
||||
|
||||
if (is_KXK<BLACK>(pos))
|
||||
{
|
||||
mi->evaluationFunction = &EvaluateKXK[BLACK];
|
||||
return mi;
|
||||
e->evaluationFunction = &EvaluateKXK[BLACK];
|
||||
return e;
|
||||
}
|
||||
|
||||
if (!pos.pieces(PAWN) && !pos.pieces(ROOK) && !pos.pieces(QUEEN))
|
||||
{
|
||||
// Minor piece endgame with at least one minor piece per side and
|
||||
// no pawns. Note that the case KmmK is already handled by KXK.
|
||||
assert((pos.pieces(KNIGHT, WHITE) | pos.pieces(BISHOP, WHITE)));
|
||||
assert((pos.pieces(KNIGHT, BLACK) | pos.pieces(BISHOP, BLACK)));
|
||||
assert((pos.pieces(WHITE, KNIGHT) | pos.pieces(WHITE, BISHOP)));
|
||||
assert((pos.pieces(BLACK, KNIGHT) | pos.pieces(BLACK, BISHOP)));
|
||||
|
||||
if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
|
||||
&& pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
|
||||
{
|
||||
mi->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()];
|
||||
return mi;
|
||||
e->evaluationFunction = &EvaluateKmmKm[pos.side_to_move()];
|
||||
return e;
|
||||
}
|
||||
}
|
||||
|
||||
@@ -155,26 +145,26 @@ MaterialInfo* MaterialInfoTable::material_info(const Position& pos) const {
|
||||
// scaling functions and we need to decide which one to use.
|
||||
EndgameBase<ScaleFactor>* sf;
|
||||
|
||||
if ((sf = funcs->get<ScaleFactor>(key)) != NULL)
|
||||
if (endgames.probe(key, sf))
|
||||
{
|
||||
mi->scalingFunction[sf->color()] = sf;
|
||||
return mi;
|
||||
e->scalingFunction[sf->color()] = sf;
|
||||
return e;
|
||||
}
|
||||
|
||||
// Generic scaling functions that refer to more then one material
|
||||
// distribution. Should be probed after the specialized ones.
|
||||
// Note that these ones don't return after setting the function.
|
||||
if (is_KBPsKs<WHITE>(pos))
|
||||
mi->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
|
||||
e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
|
||||
|
||||
if (is_KBPsKs<BLACK>(pos))
|
||||
mi->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
|
||||
e->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
|
||||
|
||||
if (is_KQKRPs<WHITE>(pos))
|
||||
mi->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
|
||||
e->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
|
||||
|
||||
else if (is_KQKRPs<BLACK>(pos))
|
||||
mi->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
|
||||
e->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
|
||||
|
||||
Value npm_w = pos.non_pawn_material(WHITE);
|
||||
Value npm_b = pos.non_pawn_material(BLACK);
|
||||
@@ -184,32 +174,32 @@ MaterialInfo* MaterialInfoTable::material_info(const Position& pos) const {
|
||||
if (pos.piece_count(BLACK, PAWN) == 0)
|
||||
{
|
||||
assert(pos.piece_count(WHITE, PAWN) >= 2);
|
||||
mi->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
|
||||
e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
|
||||
}
|
||||
else if (pos.piece_count(WHITE, PAWN) == 0)
|
||||
{
|
||||
assert(pos.piece_count(BLACK, PAWN) >= 2);
|
||||
mi->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
|
||||
e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
|
||||
}
|
||||
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
|
||||
{
|
||||
// This is a special case because we set scaling functions
|
||||
// for both colors instead of only one.
|
||||
mi->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
|
||||
mi->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
|
||||
e->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
|
||||
e->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
|
||||
}
|
||||
}
|
||||
|
||||
// No pawns makes it difficult to win, even with a material advantage
|
||||
if (pos.piece_count(WHITE, PAWN) == 0 && npm_w - npm_b <= BishopValueMidgame)
|
||||
{
|
||||
mi->factor[WHITE] = (uint8_t)
|
||||
e->factor[WHITE] = (uint8_t)
|
||||
(npm_w == npm_b || npm_w < RookValueMidgame ? 0 : NoPawnsSF[std::min(pos.piece_count(WHITE, BISHOP), 2)]);
|
||||
}
|
||||
|
||||
if (pos.piece_count(BLACK, PAWN) == 0 && npm_b - npm_w <= BishopValueMidgame)
|
||||
{
|
||||
mi->factor[BLACK] = (uint8_t)
|
||||
e->factor[BLACK] = (uint8_t)
|
||||
(npm_w == npm_b || npm_b < RookValueMidgame ? 0 : NoPawnsSF[std::min(pos.piece_count(BLACK, BISHOP), 2)]);
|
||||
}
|
||||
|
||||
@@ -219,7 +209,7 @@ MaterialInfo* MaterialInfoTable::material_info(const Position& pos) const {
|
||||
int minorPieceCount = pos.piece_count(WHITE, KNIGHT) + pos.piece_count(WHITE, BISHOP)
|
||||
+ pos.piece_count(BLACK, KNIGHT) + pos.piece_count(BLACK, BISHOP);
|
||||
|
||||
mi->spaceWeight = minorPieceCount * minorPieceCount;
|
||||
e->spaceWeight = minorPieceCount * minorPieceCount;
|
||||
}
|
||||
|
||||
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
|
||||
@@ -231,16 +221,16 @@ MaterialInfo* MaterialInfoTable::material_info(const Position& pos) const {
|
||||
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
|
||||
pos.piece_count(BLACK, BISHOP) , pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
|
||||
|
||||
mi->value = (int16_t)((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
|
||||
return mi;
|
||||
e->value = (int16_t)((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
|
||||
return e;
|
||||
}
|
||||
|
||||
|
||||
/// MaterialInfoTable::imbalance() calculates imbalance comparing piece count of each
|
||||
/// MaterialTable::imbalance() calculates imbalance comparing piece count of each
|
||||
/// piece type for both colors.
|
||||
|
||||
template<Color Us>
|
||||
int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
|
||||
int MaterialTable::imbalance(const int pieceCount[][8]) {
|
||||
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
||||
@@ -272,11 +262,11 @@ int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
|
||||
}
|
||||
|
||||
|
||||
/// MaterialInfoTable::game_phase() calculates the phase given the current
|
||||
/// MaterialTable::game_phase() calculates the phase given the current
|
||||
/// position. Because the phase is strictly a function of the material, it
|
||||
/// is stored in MaterialInfo.
|
||||
/// is stored in MaterialEntry.
|
||||
|
||||
Phase MaterialInfoTable::game_phase(const Position& pos) {
|
||||
Phase MaterialTable::game_phase(const Position& pos) {
|
||||
|
||||
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user