DroidFish: Update stockfish to version 7Beta1.

This commit is contained in:
Peter Osterlund
2015-12-27 23:25:14 +01:00
parent 27b7de9617
commit ba06c2875b
21 changed files with 602 additions and 659 deletions

View File

@@ -29,93 +29,68 @@ using namespace Search;
ThreadPool Threads; // Global object
extern void check_time();
/// Thread constructor launch the thread and then wait until it goes to sleep
/// in idle_loop().
namespace {
Thread::Thread() {
// Helpers to launch a thread after creation and joining before delete. Must be
// outside Thread c'tor and d'tor because the object must be fully initialized
// when start_routine (and hence virtual idle_loop) is called and when joining.
template<typename T> T* new_thread() {
std::thread* th = new T;
*th = std::thread(&T::idle_loop, (T*)th); // Will go to sleep
return (T*)th;
}
void delete_thread(ThreadBase* th) {
th->mutex.lock();
th->exit = true; // Search must be already finished
th->mutex.unlock();
th->notify_one();
th->join(); // Wait for thread termination
delete th;
}
resetCalls = exit = false;
maxPly = callsCnt = 0;
history.clear();
counterMoves.clear();
idx = Threads.size(); // Start from 0
std::unique_lock<Mutex> lk(mutex);
searching = true;
nativeThread = std::thread(&Thread::idle_loop, this);
sleepCondition.wait(lk, [&]{ return !searching; });
}
// ThreadBase::notify_one() wakes up the thread when there is some work to do
/// Thread destructor wait for thread termination before returning
void ThreadBase::notify_one() {
Thread::~Thread() {
mutex.lock();
exit = true;
sleepCondition.notify_one();
mutex.unlock();
nativeThread.join();
}
/// Thread::wait_for_search_finished() wait on sleep condition until not searching
void Thread::wait_for_search_finished() {
std::unique_lock<Mutex> lk(mutex);
sleepCondition.wait(lk, [&]{ return !searching; });
}
/// Thread::wait() wait on sleep condition until condition is true
void Thread::wait(std::atomic_bool& condition) {
std::unique_lock<Mutex> lk(mutex);
sleepCondition.wait(lk, [&]{ return bool(condition); });
}
/// Thread::start_searching() wake up the thread that will start the search
void Thread::start_searching(bool resume) {
std::unique_lock<Mutex> lk(mutex);
if (!resume)
searching = true;
sleepCondition.notify_one();
}
// ThreadBase::wait() set the thread to sleep until 'condition' turns true
void ThreadBase::wait(volatile const bool& condition) {
std::unique_lock<Mutex> lk(mutex);
sleepCondition.wait(lk, [&]{ return condition; });
}
// ThreadBase::wait_while() set the thread to sleep until 'condition' turns false
void ThreadBase::wait_while(volatile const bool& condition) {
std::unique_lock<Mutex> lk(mutex);
sleepCondition.wait(lk, [&]{ return !condition; });
}
// Thread c'tor makes some init but does not launch any execution thread that
// will be started only when c'tor returns.
Thread::Thread() /* : splitPoints() */ { // Initialization of non POD broken in MSVC
searching = false;
maxPly = 0;
idx = Threads.size(); // Starts from 0
}
// TimerThread::idle_loop() is where the timer thread waits Resolution milliseconds
// and then calls check_time(). When not searching, thread sleeps until it's woken up.
void TimerThread::idle_loop() {
while (!exit)
{
std::unique_lock<Mutex> lk(mutex);
if (!exit)
sleepCondition.wait_for(lk, std::chrono::milliseconds(run ? Resolution : INT_MAX));
lk.unlock();
if (!exit && run)
check_time();
}
}
// Thread::idle_loop() is where the thread is parked when it has no work to do
/// Thread::idle_loop() is where the thread is parked when it has no work to do
void Thread::idle_loop() {
@@ -123,122 +98,83 @@ void Thread::idle_loop() {
{
std::unique_lock<Mutex> lk(mutex);
searching = false;
while (!searching && !exit)
sleepCondition.wait(lk);
lk.unlock();
if (!exit && searching)
search();
}
}
// MainThread::idle_loop() is where the main thread is parked waiting to be started
// when there is a new search. The main thread will launch all the slave threads.
void MainThread::idle_loop() {
while (!exit)
{
std::unique_lock<Mutex> lk(mutex);
thinking = false;
while (!thinking && !exit)
{
sleepCondition.notify_one(); // Wake up the UI thread if needed
sleepCondition.notify_one(); // Wake up any waiting thread
sleepCondition.wait(lk);
}
lk.unlock();
if (!exit)
think();
search();
}
}
// MainThread::join() waits for main thread to finish thinking
void MainThread::join() {
std::unique_lock<Mutex> lk(mutex);
sleepCondition.wait(lk, [&]{ return !thinking; });
}
// ThreadPool::init() is called at startup to create and launch requested threads,
// that will go immediately to sleep. We cannot use a c'tor because Threads is a
// static object and we need a fully initialized engine at this point due to
// allocation of Endgames in Thread c'tor.
/// ThreadPool::init() create and launch requested threads, that will go
/// immediately to sleep. We cannot use a constructor because Threads is a
/// static object and we need a fully initialized engine at this point due to
/// allocation of Endgames in the Thread constructor.
void ThreadPool::init() {
timer = new_thread<TimerThread>();
push_back(new_thread<MainThread>());
push_back(new MainThread);
read_uci_options();
}
// ThreadPool::exit() terminates the threads before the program exits. Cannot be
// done in d'tor because threads must be terminated before freeing us.
/// ThreadPool::exit() terminate threads before the program exits. Cannot be
/// done in destructor because threads must be terminated before deleting any
/// static objects, so while still in main().
void ThreadPool::exit() {
delete_thread(timer); // As first because check_time() accesses threads data
timer = nullptr;
for (Thread* th : *this)
delete_thread(th);
clear(); // Get rid of stale pointers
while (size())
delete back(), pop_back();
}
// ThreadPool::read_uci_options() updates internal threads parameters from the
// corresponding UCI options and creates/destroys threads to match the requested
// number. Thread objects are dynamically allocated to avoid creating all possible
// threads in advance (which include pawns and material tables), even if only a
// few are to be used.
/// ThreadPool::read_uci_options() updates internal threads parameters from the
/// corresponding UCI options and creates/destroys threads to match requested
/// number. Thread objects are dynamically allocated.
void ThreadPool::read_uci_options() {
size_t requested = Options["Threads"];
size_t requested = Options["Threads"];
assert(requested > 0);
while (size() < requested)
push_back(new_thread<Thread>());
push_back(new Thread);
while (size() > requested)
{
delete_thread(back());
pop_back();
}
delete back(), pop_back();
}
// ThreadPool::nodes_searched() returns the number of nodes searched
/// ThreadPool::nodes_searched() return the number of nodes searched
int64_t ThreadPool::nodes_searched() {
int64_t nodes = 0;
for (Thread *th : *this)
for (Thread* th : *this)
nodes += th->rootPos.nodes_searched();
return nodes;
}
// ThreadPool::start_thinking() wakes up the main thread sleeping in
// MainThread::idle_loop() and starts a new search, then returns immediately.
/// ThreadPool::start_thinking() wake up the main thread sleeping in idle_loop()
/// and start a new search, then return immediately.
void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits,
StateStackPtr& states) {
main()->join();
Signals.stopOnPonderhit = Signals.firstRootMove = false;
Signals.stop = Signals.failedLowAtRoot = false;
main()->wait_for_search_finished();
Signals.stopOnPonderhit = Signals.stop = false;
main()->rootMoves.clear();
main()->rootPos = pos;
@@ -254,6 +190,5 @@ void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits,
|| std::count(limits.searchmoves.begin(), limits.searchmoves.end(), m))
main()->rootMoves.push_back(RootMove(m));
main()->thinking = true;
main()->notify_one(); // Wake up main thread: 'thinking' must be already set
main()->start_searching();
}