DroidFish: Updated stockfish to version 2.3.

This commit is contained in:
Peter Osterlund
2012-09-16 15:16:15 +00:00
parent 41e7a6922c
commit a7bd973995
36 changed files with 1465 additions and 1495 deletions

View File

@@ -27,7 +27,7 @@
using namespace Search;
ThreadsManager Threads; // Global object
ThreadPool Threads; // Global object
namespace { extern "C" {
@@ -52,12 +52,6 @@ Thread::Thread(Fn fn) {
do_sleep = (fn != &Thread::main_loop); // Avoid a race with start_searching()
lock_init(sleepLock);
cond_init(sleepCond);
for (int j = 0; j < MAX_SPLITPOINTS_PER_THREAD; j++)
lock_init(splitPoints[j].lock);
if (!thread_create(handle, start_routine, this))
{
std::cerr << "Failed to create thread number " << idx << std::endl;
@@ -74,14 +68,7 @@ Thread::~Thread() {
do_exit = true; // Search must be already finished
wake_up();
thread_join(handle); // Wait for thread termination
lock_destroy(sleepLock);
cond_destroy(sleepCond);
for (int j = 0; j < MAX_SPLITPOINTS_PER_THREAD; j++)
lock_destroy(splitPoints[j].lock);
}
@@ -93,9 +80,9 @@ void Thread::timer_loop() {
while (!do_exit)
{
lock_grab(sleepLock);
timed_wait(sleepCond, sleepLock, maxPly ? maxPly : INT_MAX);
lock_release(sleepLock);
mutex.lock();
sleepCondition.wait_for(mutex, maxPly ? maxPly : INT_MAX);
mutex.unlock();
check_time();
}
}
@@ -108,18 +95,18 @@ void Thread::main_loop() {
while (true)
{
lock_grab(sleepLock);
mutex.lock();
do_sleep = true; // Always return to sleep after a search
is_searching = false;
while (do_sleep && !do_exit)
{
cond_signal(Threads.sleepCond); // Wake up UI thread if needed
cond_wait(sleepCond, sleepLock);
Threads.sleepCondition.notify_one(); // Wake up UI thread if needed
sleepCondition.wait(mutex);
}
lock_release(sleepLock);
mutex.unlock();
if (do_exit)
return;
@@ -127,6 +114,8 @@ void Thread::main_loop() {
is_searching = true;
Search::think();
assert(is_searching);
}
}
@@ -136,9 +125,9 @@ void Thread::main_loop() {
void Thread::wake_up() {
lock_grab(sleepLock);
cond_signal(sleepCond);
lock_release(sleepLock);
mutex.lock();
sleepCondition.notify_one();
mutex.unlock();
}
@@ -153,9 +142,9 @@ void Thread::wait_for_stop_or_ponderhit() {
Signals.stopOnPonderhit = true;
lock_grab(sleepLock);
while (!Signals.stop) cond_wait(sleepCond, sleepLock);
lock_release(sleepLock);
mutex.lock();
while (!Signals.stop) sleepCondition.wait(mutex);;
mutex.unlock();
}
@@ -199,26 +188,22 @@ bool Thread::is_available_to(Thread* master) const {
// a c'tor becuase Threads is a static object and we need a fully initialized
// engine at this point due to allocation of endgames in Thread c'tor.
void ThreadsManager::init() {
void ThreadPool::init() {
cond_init(sleepCond);
lock_init(splitLock);
timer = new Thread(&Thread::timer_loop);
threads.push_back(new Thread(&Thread::main_loop));
read_uci_options();
}
// d'tor cleanly terminates the threads when the program exits.
// exit() cleanly terminates the threads before the program exits.
ThreadsManager::~ThreadsManager() {
void ThreadPool::exit() {
for (int i = 0; i < size(); i++)
for (size_t i = 0; i < threads.size(); i++)
delete threads[i];
delete timer;
lock_destroy(splitLock);
cond_destroy(sleepCond);
}
@@ -227,19 +212,19 @@ ThreadsManager::~ThreadsManager() {
// objects are dynamically allocated to avoid creating in advance all possible
// threads, with included pawns and material tables, if only few are used.
void ThreadsManager::read_uci_options() {
void ThreadPool::read_uci_options() {
maxThreadsPerSplitPoint = Options["Max Threads per Split Point"];
minimumSplitDepth = Options["Min Split Depth"] * ONE_PLY;
useSleepingThreads = Options["Use Sleeping Threads"];
int requested = Options["Threads"];
size_t requested = Options["Threads"];
assert(requested > 0);
while (size() < requested)
while (threads.size() < requested)
threads.push_back(new Thread(&Thread::idle_loop));
while (size() > requested)
while (threads.size() > requested)
{
delete threads.back();
threads.pop_back();
@@ -251,9 +236,9 @@ void ThreadsManager::read_uci_options() {
// on the sleep condition and to reset maxPly. When useSleepingThreads is set
// threads will be woken up at split time.
void ThreadsManager::wake_up() const {
void ThreadPool::wake_up() const {
for (int i = 0; i < size(); i++)
for (size_t i = 0; i < threads.size(); i++)
{
threads[i]->maxPly = 0;
threads[i]->do_sleep = false;
@@ -267,19 +252,20 @@ void ThreadsManager::wake_up() const {
// sleep() is called after the search finishes to ask all the threads but the
// main one to go waiting on a sleep condition.
void ThreadsManager::sleep() const {
void ThreadPool::sleep() const {
for (int i = 1; i < size(); i++) // Main thread will go to sleep by itself
threads[i]->do_sleep = true; // to avoid a race with start_searching()
// Main thread will go to sleep by itself to avoid a race with start_searching()
for (size_t i = 1; i < threads.size(); i++)
threads[i]->do_sleep = true;
}
// available_slave_exists() tries to find an idle thread which is available as
// a slave for the thread 'master'.
bool ThreadsManager::available_slave_exists(Thread* master) const {
bool ThreadPool::available_slave_exists(Thread* master) const {
for (int i = 0; i < size(); i++)
for (size_t i = 0; i < threads.size(); i++)
if (threads[i]->is_available_to(master))
return true;
@@ -297,9 +283,10 @@ bool ThreadsManager::available_slave_exists(Thread* master) const {
// search(). When all threads have returned from search() then split() returns.
template <bool Fake>
Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta,
Value bestValue, Move* bestMove, Depth depth,
Move threatMove, int moveCount, MovePicker* mp, int nodeType) {
Value ThreadPool::split(Position& pos, Stack* ss, Value alpha, Value beta,
Value bestValue, Move* bestMove, Depth depth,
Move threatMove, int moveCount, MovePicker* mp, int nodeType) {
assert(pos.pos_is_ok());
assert(bestValue > -VALUE_INFINITE);
assert(bestValue <= alpha);
@@ -313,41 +300,41 @@ Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta,
return bestValue;
// Pick the next available split point from the split point stack
SplitPoint* sp = &master->splitPoints[master->splitPointsCnt];
SplitPoint& sp = master->splitPoints[master->splitPointsCnt];
sp->parent = master->curSplitPoint;
sp->master = master;
sp->cutoff = false;
sp->slavesMask = 1ULL << master->idx;
sp->depth = depth;
sp->bestMove = *bestMove;
sp->threatMove = threatMove;
sp->alpha = alpha;
sp->beta = beta;
sp->nodeType = nodeType;
sp->bestValue = bestValue;
sp->mp = mp;
sp->moveCount = moveCount;
sp->pos = &pos;
sp->nodes = 0;
sp->ss = ss;
sp.parent = master->curSplitPoint;
sp.master = master;
sp.cutoff = false;
sp.slavesMask = 1ULL << master->idx;
sp.depth = depth;
sp.bestMove = *bestMove;
sp.threatMove = threatMove;
sp.alpha = alpha;
sp.beta = beta;
sp.nodeType = nodeType;
sp.bestValue = bestValue;
sp.mp = mp;
sp.moveCount = moveCount;
sp.pos = &pos;
sp.nodes = 0;
sp.ss = ss;
assert(master->is_searching);
master->curSplitPoint = sp;
master->curSplitPoint = &sp;
int slavesCnt = 0;
// Try to allocate available threads and ask them to start searching setting
// is_searching flag. This must be done under lock protection to avoid concurrent
// allocation of the same slave by another master.
lock_grab(sp->lock);
lock_grab(splitLock);
sp.mutex.lock();
mutex.lock();
for (int i = 0; i < size() && !Fake; ++i)
for (size_t i = 0; i < threads.size() && !Fake; ++i)
if (threads[i]->is_available_to(master))
{
sp->slavesMask |= 1ULL << i;
threads[i]->curSplitPoint = sp;
sp.slavesMask |= 1ULL << i;
threads[i]->curSplitPoint = &sp;
threads[i]->is_searching = true; // Slave leaves idle_loop()
if (useSleepingThreads)
@@ -359,17 +346,16 @@ Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta,
master->splitPointsCnt++;
lock_release(splitLock);
lock_release(sp->lock);
mutex.unlock();
sp.mutex.unlock();
// Everything is set up. The master thread enters the idle loop, from which
// it will instantly launch a search, because its is_searching flag is set.
// We pass the split point as a parameter to the idle loop, which means that
// the thread will return from the idle loop when all slaves have finished
// The thread will return from the idle loop when all slaves have finished
// their work at this split point.
if (slavesCnt || Fake)
{
master->idle_loop(sp);
master->idle_loop();
// In helpful master concept a master can help only a sub-tree of its split
// point, and because here is all finished is not possible master is booked.
@@ -379,68 +365,69 @@ Value ThreadsManager::split(Position& pos, Stack* ss, Value alpha, Value beta,
// We have returned from the idle loop, which means that all threads are
// finished. Note that setting is_searching and decreasing splitPointsCnt is
// done under lock protection to avoid a race with Thread::is_available_to().
lock_grab(sp->lock); // To protect sp->nodes
lock_grab(splitLock);
sp.mutex.lock(); // To protect sp.nodes
mutex.lock();
master->is_searching = true;
master->splitPointsCnt--;
master->curSplitPoint = sp->parent;
pos.set_nodes_searched(pos.nodes_searched() + sp->nodes);
*bestMove = sp->bestMove;
master->curSplitPoint = sp.parent;
pos.set_nodes_searched(pos.nodes_searched() + sp.nodes);
*bestMove = sp.bestMove;
lock_release(splitLock);
lock_release(sp->lock);
mutex.unlock();
sp.mutex.unlock();
return sp->bestValue;
return sp.bestValue;
}
// Explicit template instantiations
template Value ThreadsManager::split<false>(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker*, int);
template Value ThreadsManager::split<true>(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker*, int);
template Value ThreadPool::split<false>(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker*, int);
template Value ThreadPool::split<true>(Position&, Stack*, Value, Value, Value, Move*, Depth, Move, int, MovePicker*, int);
// ThreadsManager::set_timer() is used to set the timer to trigger after msec
// milliseconds. If msec is 0 then timer is stopped.
// set_timer() is used to set the timer to trigger after msec milliseconds.
// If msec is 0 then timer is stopped.
void ThreadsManager::set_timer(int msec) {
void ThreadPool::set_timer(int msec) {
lock_grab(timer->sleepLock);
timer->mutex.lock();
timer->maxPly = msec;
cond_signal(timer->sleepCond); // Wake up and restart the timer
lock_release(timer->sleepLock);
timer->sleepCondition.notify_one(); // Wake up and restart the timer
timer->mutex.unlock();
}
// ThreadsManager::wait_for_search_finished() waits for main thread to go to
// sleep, this means search is finished. Then returns.
// wait_for_search_finished() waits for main thread to go to sleep, this means
// search is finished. Then returns.
void ThreadsManager::wait_for_search_finished() {
void ThreadPool::wait_for_search_finished() {
Thread* t = main_thread();
lock_grab(t->sleepLock);
cond_signal(t->sleepCond); // In case is waiting for stop or ponderhit
while (!t->do_sleep) cond_wait(sleepCond, t->sleepLock);
lock_release(t->sleepLock);
t->mutex.lock();
t->sleepCondition.notify_one(); // In case is waiting for stop or ponderhit
while (!t->do_sleep) sleepCondition.wait(t->mutex);
t->mutex.unlock();
}
// ThreadsManager::start_searching() wakes up the main thread sleeping in
// main_loop() so to start a new search, then returns immediately.
// start_searching() wakes up the main thread sleeping in main_loop() so to start
// a new search, then returns immediately.
void ThreadsManager::start_searching(const Position& pos, const LimitsType& limits,
const std::vector<Move>& searchMoves) {
void ThreadPool::start_searching(const Position& pos, const LimitsType& limits,
const std::vector<Move>& searchMoves, StateStackPtr& states) {
wait_for_search_finished();
SearchTime.restart(); // As early as possible
SearchTime = Time::now(); // As early as possible
Signals.stopOnPonderhit = Signals.firstRootMove = false;
Signals.stop = Signals.failedLowAtRoot = false;
RootPosition = pos;
Limits = limits;
SetupStates = states; // Ownership transfer here
RootMoves.clear();
for (MoveList<MV_LEGAL> ml(pos); !ml.end(); ++ml)
for (MoveList<LEGAL> ml(pos); !ml.end(); ++ml)
if (searchMoves.empty() || std::count(searchMoves.begin(), searchMoves.end(), ml.move()))
RootMoves.push_back(RootMove(ml.move()));