DroidFish: Updated stockfish to version 2.3.

This commit is contained in:
Peter Osterlund
2012-09-16 15:16:15 +00:00
parent 41e7a6922c
commit a7bd973995
36 changed files with 1465 additions and 1495 deletions

View File

@@ -23,6 +23,7 @@
#include "bitboard.h"
#include "bitcount.h"
#include "misc.h"
#include "rkiss.h"
CACHE_LINE_ALIGNMENT
@@ -45,22 +46,27 @@ Bitboard ThisAndAdjacentFilesBB[8];
Bitboard InFrontBB[2][8];
Bitboard StepAttacksBB[16][64];
Bitboard BetweenBB[64][64];
Bitboard DistanceRingsBB[64][8];
Bitboard ForwardBB[2][64];
Bitboard PassedPawnMask[2][64];
Bitboard AttackSpanMask[2][64];
Bitboard PseudoAttacks[6][64];
uint8_t BitCount8Bit[256];
int SquareDistance[64][64];
namespace {
// De Bruijn sequences. See chessprogramming.wikispaces.com/BitScan
const uint64_t DeBruijn_64 = 0x218A392CD3D5DBFULL;
const uint32_t DeBruijn_32 = 0x783A9B23;
CACHE_LINE_ALIGNMENT
int BSFTable[64];
int MS1BTable[256];
Bitboard RTable[0x19000]; // Storage space for rook attacks
Bitboard BTable[0x1480]; // Storage space for bishop attacks
uint8_t BitCount8Bit[256];
typedef unsigned (Fn)(Square, Bitboard);
@@ -68,40 +74,35 @@ namespace {
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index);
}
/// first_1() finds the least significant nonzero bit in a nonzero bitboard.
/// pop_1st_bit() finds and clears the least significant nonzero bit in a
/// nonzero bitboard.
/// lsb()/msb() finds the least/most significant bit in a nonzero bitboard.
/// pop_lsb() finds and clears the least significant bit in a nonzero bitboard.
#if defined(IS_64BIT) && !defined(USE_BSFQ)
#if !defined(USE_BSFQ)
Square first_1(Bitboard b) {
return Square(BSFTable[((b & -b) * 0x218A392CD3D5DBFULL) >> 58]);
}
Square lsb(Bitboard b) {
Square pop_1st_bit(Bitboard* b) {
Bitboard bb = *b;
*b &= (*b - 1);
return Square(BSFTable[((bb & -bb) * 0x218A392CD3D5DBFULL) >> 58]);
}
if (Is64Bit)
return Square(BSFTable[((b & -b) * DeBruijn_64) >> 58]);
#elif !defined(USE_BSFQ)
Square first_1(Bitboard b) {
b ^= (b - 1);
uint32_t fold = unsigned(b) ^ unsigned(b >> 32);
return Square(BSFTable[(fold * 0x783A9B23) >> 26]);
return Square(BSFTable[(fold * DeBruijn_32) >> 26]);
}
Square pop_1st_bit(Bitboard* b) {
Square pop_lsb(Bitboard* b) {
Bitboard bb = *b;
*b = bb & (bb - 1);
if (Is64Bit)
return Square(BSFTable[((bb & -bb) * DeBruijn_64) >> 58]);
bb ^= (bb - 1);
uint32_t fold = unsigned(bb) ^ unsigned(bb >> 32);
return Square(BSFTable[(fold * 0x783A9B23) >> 26]);
return Square(BSFTable[(fold * DeBruijn_32) >> 26]);
}
Square last_1(Bitboard b) {
Square msb(Bitboard b) {
unsigned b32;
int result = 0;
@@ -137,16 +138,18 @@ Square last_1(Bitboard b) {
void Bitboards::print(Bitboard b) {
sync_cout;
for (Rank rank = RANK_8; rank >= RANK_1; rank--)
{
std::cout << "+---+---+---+---+---+---+---+---+" << '\n';
for (File file = FILE_A; file <= FILE_H; file++)
std::cout << "| " << ((b & make_square(file, rank)) ? "X " : " ");
std::cout << "| " << (b & (file | rank) ? "X " : " ");
std::cout << "|\n";
}
std::cout << "+---+---+---+---+---+---+---+---+" << std::endl;
std::cout << "+---+---+---+---+---+---+---+---+" << sync_endl;
}
@@ -195,16 +198,22 @@ void Bitboards::init() {
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2));
for (Square s1 = SQ_A1; s1 <= SQ_H8; s1++)
for (int d = 1; d < 8; d++)
for (Square s2 = SQ_A1; s2 <= SQ_H8; s2++)
if (SquareDistance[s1][s2] == d)
DistanceRingsBB[s1][d - 1] |= s2;
for (int i = 0; i < 64; i++)
if (!Is64Bit) // Matt Taylor's folding trick for 32 bit systems
{
Bitboard b = 1ULL << i;
b ^= b - 1;
b ^= b >> 32;
BSFTable[(uint32_t)(b * 0x783A9B23) >> 26] = i;
BSFTable[(uint32_t)(b * DeBruijn_32) >> 26] = i;
}
else
BSFTable[((1ULL << i) * 0x218A392CD3D5DBFULL) >> 58] = i;
BSFTable[((1ULL << i) * DeBruijn_64) >> 58] = i;
int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
{}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
@@ -265,25 +274,17 @@ namespace {
}
Bitboard pick_random(Bitboard mask, RKISS& rk, int booster) {
Bitboard magic;
Bitboard pick_random(RKISS& rk, int booster) {
// Values s1 and s2 are used to rotate the candidate magic of a
// quantity known to be the optimal to quickly find the magics.
int s1 = booster & 63, s2 = (booster >> 6) & 63;
while (true)
{
magic = rk.rand<Bitboard>();
magic = (magic >> s1) | (magic << (64 - s1));
magic &= rk.rand<Bitboard>();
magic = (magic >> s2) | (magic << (64 - s2));
magic &= rk.rand<Bitboard>();
if (BitCount8Bit[(mask * magic) >> 56] >= 6)
return magic;
}
Bitboard m = rk.rand<Bitboard>();
m = (m >> s1) | (m << (64 - s1));
m &= rk.rand<Bitboard>();
m = (m >> s2) | (m << (64 - s2));
return m & rk.rand<Bitboard>();
}
@@ -336,7 +337,9 @@ namespace {
// Find a magic for square 's' picking up an (almost) random number
// until we find the one that passes the verification test.
do {
magics[s] = pick_random(masks[s], rk, booster);
do magics[s] = pick_random(rk, booster);
while (BitCount8Bit[(magics[s] * masks[s]) >> 56] < 6);
memset(attacks[s], 0, size * sizeof(Bitboard));
// A good magic must map every possible occupancy to an index that
@@ -350,6 +353,8 @@ namespace {
if (attack && attack != reference[i])
break;
assert(reference[i] != 0);
attack = reference[i];
}
} while (i != size);