Update to Stockfish 11

This commit is contained in:
Peter Osterlund
2020-01-18 08:00:03 +01:00
parent c19a3b3777
commit 9c1d76faa1
38 changed files with 1777 additions and 1605 deletions

View File

@@ -2,7 +2,7 @@
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Copyright (C) 2015-2019 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
Copyright (C) 2015-2020 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -50,41 +50,6 @@ const string PieceToChar(" PNBRQK pnbrqk");
constexpr Piece Pieces[] = { W_PAWN, W_KNIGHT, W_BISHOP, W_ROOK, W_QUEEN, W_KING,
B_PAWN, B_KNIGHT, B_BISHOP, B_ROOK, B_QUEEN, B_KING };
// min_attacker() is a helper function used by see_ge() to locate the least
// valuable attacker for the side to move, remove the attacker we just found
// from the bitboards and scan for new X-ray attacks behind it.
template<int Pt>
PieceType min_attacker(const Bitboard* byTypeBB, Square to, Bitboard stmAttackers,
Bitboard& occupied, Bitboard& attackers) {
Bitboard b = stmAttackers & byTypeBB[Pt];
if (!b)
return min_attacker<Pt + 1>(byTypeBB, to, stmAttackers, occupied, attackers);
occupied ^= lsb(b); // Remove the attacker from occupied
// Add any X-ray attack behind the just removed piece. For instance with
// rooks in a8 and a7 attacking a1, after removing a7 we add rook in a8.
// Note that new added attackers can be of any color.
if (Pt == PAWN || Pt == BISHOP || Pt == QUEEN)
attackers |= attacks_bb<BISHOP>(to, occupied) & (byTypeBB[BISHOP] | byTypeBB[QUEEN]);
if (Pt == ROOK || Pt == QUEEN)
attackers |= attacks_bb<ROOK>(to, occupied) & (byTypeBB[ROOK] | byTypeBB[QUEEN]);
// X-ray may add already processed pieces because byTypeBB[] is constant: in
// the rook example, now attackers contains _again_ rook in a7, so remove it.
attackers &= occupied;
return (PieceType)Pt;
}
template<>
PieceType min_attacker<KING>(const Bitboard*, Square, Bitboard, Bitboard&, Bitboard&) {
return KING; // No need to update bitboards: it is the last cycle
}
} // namespace
@@ -183,7 +148,7 @@ void Position::init() {
{
std::swap(cuckoo[i], key);
std::swap(cuckooMove[i], move);
if (move == 0) // Arrived at empty slot ?
if (move == MOVE_NONE) // Arrived at empty slot?
break;
i = (i == H1(key)) ? H2(key) : H1(key); // Push victim to alternative slot
}
@@ -330,24 +295,18 @@ Position& Position::set(const string& fenStr, bool isChess960, StateInfo* si, Th
void Position::set_castling_right(Color c, Square rfrom) {
Square kfrom = square<KING>(c);
CastlingSide cs = kfrom < rfrom ? KING_SIDE : QUEEN_SIDE;
CastlingRight cr = (c | cs);
CastlingRights cr = c & (kfrom < rfrom ? KING_SIDE: QUEEN_SIDE);
st->castlingRights |= cr;
castlingRightsMask[kfrom] |= cr;
castlingRightsMask[rfrom] |= cr;
castlingRookSquare[cr] = rfrom;
Square kto = relative_square(c, cs == KING_SIDE ? SQ_G1 : SQ_C1);
Square rto = relative_square(c, cs == KING_SIDE ? SQ_F1 : SQ_D1);
Square kto = relative_square(c, cr & KING_SIDE ? SQ_G1 : SQ_C1);
Square rto = relative_square(c, cr & KING_SIDE ? SQ_F1 : SQ_D1);
for (Square s = std::min(rfrom, rto); s <= std::max(rfrom, rto); ++s)
if (s != kfrom && s != rfrom)
castlingPath[cr] |= s;
for (Square s = std::min(kfrom, kto); s <= std::max(kfrom, kto); ++s)
if (s != kfrom && s != rfrom)
castlingPath[cr] |= s;
castlingPath[cr] = (between_bb(rfrom, rto) | between_bb(kfrom, kto) | rto | kto)
& ~(square_bb(kfrom) | rfrom);
}
@@ -388,6 +347,12 @@ void Position::set_state(StateInfo* si) const {
Square s = pop_lsb(&b);
Piece pc = piece_on(s);
si->key ^= Zobrist::psq[pc][s];
if (type_of(pc) == PAWN)
si->pawnKey ^= Zobrist::psq[pc][s];
else if (type_of(pc) != KING)
si->nonPawnMaterial[color_of(pc)] += PieceValue[MG][pc];
}
if (si->epSquare != SQ_NONE)
@@ -398,20 +363,9 @@ void Position::set_state(StateInfo* si) const {
si->key ^= Zobrist::castling[si->castlingRights];
for (Bitboard b = pieces(PAWN); b; )
{
Square s = pop_lsb(&b);
si->pawnKey ^= Zobrist::psq[piece_on(s)][s];
}
for (Piece pc : Pieces)
{
if (type_of(pc) != PAWN && type_of(pc) != KING)
si->nonPawnMaterial[color_of(pc)] += pieceCount[pc] * PieceValue[MG][pc];
for (int cnt = 0; cnt < pieceCount[pc]; ++cnt)
si->materialKey ^= Zobrist::psq[pc][cnt];
}
}
@@ -465,18 +419,18 @@ const string Position::fen() const {
ss << (sideToMove == WHITE ? " w " : " b ");
if (can_castle(WHITE_OO))
ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | KING_SIDE))) : 'K');
ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE_OO ))) : 'K');
if (can_castle(WHITE_OOO))
ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE | QUEEN_SIDE))) : 'Q');
ss << (chess960 ? char('A' + file_of(castling_rook_square(WHITE_OOO))) : 'Q');
if (can_castle(BLACK_OO))
ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | KING_SIDE))) : 'k');
ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK_OO ))) : 'k');
if (can_castle(BLACK_OOO))
ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK | QUEEN_SIDE))) : 'q');
ss << (chess960 ? char('a' + file_of(castling_rook_square(BLACK_OOO))) : 'q');
if (!can_castle(WHITE) && !can_castle(BLACK))
if (!can_castle(ANY_CASTLING))
ss << '-';
ss << (ep_square() == SQ_NONE ? " - " : " " + UCI::square(ep_square()) + " ")
@@ -498,14 +452,15 @@ Bitboard Position::slider_blockers(Bitboard sliders, Square s, Bitboard& pinners
Bitboard blockers = 0;
pinners = 0;
// Snipers are sliders that attack 's' when a piece is removed
// Snipers are sliders that attack 's' when a piece and other snipers are removed
Bitboard snipers = ( (PseudoAttacks[ ROOK][s] & pieces(QUEEN, ROOK))
| (PseudoAttacks[BISHOP][s] & pieces(QUEEN, BISHOP))) & sliders;
Bitboard occupancy = pieces() ^ snipers;
while (snipers)
{
Square sniperSq = pop_lsb(&snipers);
Bitboard b = between_bb(s, sniperSq) & pieces();
Bitboard b = between_bb(s, sniperSq) & occupancy;
if (b && !more_than_one(b))
{
@@ -540,6 +495,7 @@ bool Position::legal(Move m) const {
Color us = sideToMove;
Square from = from_sq(m);
Square to = to_sq(m);
assert(color_of(moved_piece(m)) == us);
assert(piece_on(square<KING>(us)) == make_piece(us, KING));
@@ -550,7 +506,6 @@ bool Position::legal(Move m) const {
if (type_of(m) == ENPASSANT)
{
Square ksq = square<KING>(us);
Square to = to_sq(m);
Square capsq = to - pawn_push(us);
Bitboard occupied = (pieces() ^ from ^ capsq) | to;
@@ -563,16 +518,35 @@ bool Position::legal(Move m) const {
&& !(attacks_bb<BISHOP>(ksq, occupied) & pieces(~us, QUEEN, BISHOP));
}
// If the moving piece is a king, check whether the destination
// square is attacked by the opponent. Castling moves are checked
// for legality during move generation.
// Castling moves generation does not check if the castling path is clear of
// enemy attacks, it is delayed at a later time: now!
if (type_of(m) == CASTLING)
{
// After castling, the rook and king final positions are the same in
// Chess960 as they would be in standard chess.
to = relative_square(us, to > from ? SQ_G1 : SQ_C1);
Direction step = to > from ? WEST : EAST;
for (Square s = to; s != from; s += step)
if (attackers_to(s) & pieces(~us))
return false;
// In case of Chess960, verify that when moving the castling rook we do
// not discover some hidden checker.
// For instance an enemy queen in SQ_A1 when castling rook is in SQ_B1.
return !chess960
|| !(attacks_bb<ROOK>(to, pieces() ^ to_sq(m)) & pieces(~us, ROOK, QUEEN));
}
// If the moving piece is a king, check whether the destination square is
// attacked by the opponent.
if (type_of(piece_on(from)) == KING)
return type_of(m) == CASTLING || !(attackers_to(to_sq(m)) & pieces(~us));
return !(attackers_to(to) & pieces(~us));
// A non-king move is legal if and only if it is not pinned or it
// is moving along the ray towards or away from the king.
return !(blockers_for_king(us) & from)
|| aligned(from, to_sq(m), square<KING>(us));
|| aligned(from, to, square<KING>(us));
}
@@ -609,7 +583,7 @@ bool Position::pseudo_legal(const Move m) const {
{
// We have already handled promotion moves, so destination
// cannot be on the 8th/1st rank.
if (rank_of(to) == relative_rank(us, RANK_8))
if ((Rank8BB | Rank1BB) & to)
return false;
if ( !(attacks_from<PAWN>(from, us) & pieces(~us) & to) // Not a capture
@@ -843,9 +817,8 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
st->nonPawnMaterial[us] += PieceValue[MG][promotion];
}
// Update pawn hash key and prefetch access to pawnsTable
// Update pawn hash key
st->pawnKey ^= Zobrist::psq[pc][from] ^ Zobrist::psq[pc][to];
prefetch2(thisThread->pawnsTable[st->pawnKey]);
// Reset rule 50 draw counter
st->rule50 = 0;
@@ -865,6 +838,25 @@ void Position::do_move(Move m, StateInfo& newSt, bool givesCheck) {
// Update king attacks used for fast check detection
set_check_info(st);
// Calculate the repetition info. It is the ply distance from the previous
// occurrence of the same position, negative in the 3-fold case, or zero
// if the position was not repeated.
st->repetition = 0;
int end = std::min(st->rule50, st->pliesFromNull);
if (end >= 4)
{
StateInfo* stp = st->previous->previous;
for (int i = 4; i <= end; i += 2)
{
stp = stp->previous->previous;
if (stp->key == st->key)
{
st->repetition = stp->repetition ? -i : i;
break;
}
}
}
assert(pos_is_ok());
}
@@ -952,7 +944,7 @@ void Position::do_castling(Color us, Square from, Square& to, Square& rfrom, Squ
}
/// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips
/// Position::do(undo)_null_move() is used to do(undo) a "null move": it flips
/// the side to move without executing any move on the board.
void Position::do_null_move(StateInfo& newSt) {
@@ -980,6 +972,8 @@ void Position::do_null_move(StateInfo& newSt) {
set_check_info(st);
st->repetition = 0;
assert(pos_is_ok());
}
@@ -1023,77 +1017,96 @@ bool Position::see_ge(Move m, Value threshold) const {
if (type_of(m) != NORMAL)
return VALUE_ZERO >= threshold;
Bitboard stmAttackers;
Square from = from_sq(m), to = to_sq(m);
PieceType nextVictim = type_of(piece_on(from));
Color us = color_of(piece_on(from));
Color stm = ~us; // First consider opponent's move
Value balance; // Values of the pieces taken by us minus opponent's ones
// The opponent may be able to recapture so this is the best result
// we can hope for.
balance = PieceValue[MG][piece_on(to)] - threshold;
if (balance < VALUE_ZERO)
int swap = PieceValue[MG][piece_on(to)] - threshold;
if (swap < 0)
return false;
// Now assume the worst possible result: that the opponent can
// capture our piece for free.
balance -= PieceValue[MG][nextVictim];
// If it is enough (like in PxQ) then return immediately. Note that
// in case nextVictim == KING we always return here, this is ok
// if the given move is legal.
if (balance >= VALUE_ZERO)
swap = PieceValue[MG][piece_on(from)] - swap;
if (swap <= 0)
return true;
// Find all attackers to the destination square, with the moving piece
// removed, but possibly an X-ray attacker added behind it.
Bitboard occupied = pieces() ^ from ^ to;
Bitboard attackers = attackers_to(to, occupied) & occupied;
Color stm = color_of(piece_on(from));
Bitboard attackers = attackers_to(to, occupied);
Bitboard stmAttackers, bb;
int res = 1;
while (true)
{
stmAttackers = attackers & pieces(stm);
// Don't allow pinned pieces to attack (except the king) as long as
// all pinners are on their original square.
if (!(st->pinners[~stm] & ~occupied))
stmAttackers &= ~st->blockersForKing[stm];
stm = ~stm;
attackers &= occupied;
// If stm has no more attackers then give up: stm loses
if (!(stmAttackers = attackers & pieces(stm)))
break;
// Don't allow pinned pieces to attack (except the king) as long as
// there are pinners on their original square.
if (st->pinners[~stm] & occupied)
stmAttackers &= ~st->blockersForKing[stm];
if (!stmAttackers)
break;
res ^= 1;
// Locate and remove the next least valuable attacker, and add to
// the bitboard 'attackers' the possibly X-ray attackers behind it.
nextVictim = min_attacker<PAWN>(byTypeBB, to, stmAttackers, occupied, attackers);
stm = ~stm; // Switch side to move
// Negamax the balance with alpha = balance, beta = balance+1 and
// add nextVictim's value.
//
// (balance, balance+1) -> (-balance-1, -balance)
//
assert(balance < VALUE_ZERO);
balance = -balance - 1 - PieceValue[MG][nextVictim];
// If balance is still non-negative after giving away nextVictim then we
// win. The only thing to be careful about it is that we should revert
// stm if we captured with the king when the opponent still has attackers.
if (balance >= VALUE_ZERO)
// the bitboard 'attackers' any X-ray attackers behind it.
if ((bb = stmAttackers & pieces(PAWN)))
{
if (nextVictim == KING && (attackers & pieces(stm)))
stm = ~stm;
break;
}
assert(nextVictim != KING);
}
return us != stm; // We break the above loop when stm loses
}
if ((swap = PawnValueMg - swap) < res)
break;
occupied ^= lsb(bb);
attackers |= attacks_bb<BISHOP>(to, occupied) & pieces(BISHOP, QUEEN);
}
else if ((bb = stmAttackers & pieces(KNIGHT)))
{
if ((swap = KnightValueMg - swap) < res)
break;
occupied ^= lsb(bb);
}
else if ((bb = stmAttackers & pieces(BISHOP)))
{
if ((swap = BishopValueMg - swap) < res)
break;
occupied ^= lsb(bb);
attackers |= attacks_bb<BISHOP>(to, occupied) & pieces(BISHOP, QUEEN);
}
else if ((bb = stmAttackers & pieces(ROOK)))
{
if ((swap = RookValueMg - swap) < res)
break;
occupied ^= lsb(bb);
attackers |= attacks_bb<ROOK>(to, occupied) & pieces(ROOK, QUEEN);
}
else if ((bb = stmAttackers & pieces(QUEEN)))
{
if ((swap = QueenValueMg - swap) < res)
break;
occupied ^= lsb(bb);
attackers |= (attacks_bb<BISHOP>(to, occupied) & pieces(BISHOP, QUEEN))
| (attacks_bb<ROOK >(to, occupied) & pieces(ROOK , QUEEN));
}
else // KING
// If we "capture" with the king but opponent still has attackers,
// reverse the result.
return (attackers & ~pieces(stm)) ? res ^ 1 : res;
}
return bool(res);
}
/// Position::is_draw() tests whether the position is drawn by 50-move rule
/// or by repetition. It does not detect stalemates.
@@ -1103,24 +1116,10 @@ bool Position::is_draw(int ply) const {
if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size()))
return true;
int end = std::min(st->rule50, st->pliesFromNull);
if (end < 4)
return false;
StateInfo* stp = st->previous->previous;
int cnt = 0;
for (int i = 4; i <= end; i += 2)
{
stp = stp->previous->previous;
// Return a draw score if a position repeats once earlier but strictly
// after the root, or repeats twice before or at the root.
if ( stp->key == st->key
&& ++cnt + (ply > i) == 2)
return true;
}
// Return a draw score if a position repeats once earlier but strictly
// after the root, or repeats twice before or at the root.
if (st->repetition && st->repetition < ply)
return true;
return false;
}
@@ -1132,26 +1131,15 @@ bool Position::is_draw(int ply) const {
bool Position::has_repeated() const {
StateInfo* stc = st;
while (true)
int end = std::min(st->rule50, st->pliesFromNull);
while (end-- >= 4)
{
int i = 4, end = std::min(stc->rule50, stc->pliesFromNull);
if (end < i)
return false;
StateInfo* stp = stc->previous->previous;
do {
stp = stp->previous->previous;
if (stp->key == stc->key)
return true;
i += 2;
} while (i <= end);
if (stc->repetition)
return true;
stc = stc->previous;
}
return false;
}
@@ -1184,22 +1172,19 @@ bool Position::has_game_cycle(int ply) const {
if (!(between_bb(s1, s2) & pieces()))
{
// In the cuckoo table, both moves Rc1c5 and Rc5c1 are stored in the same
// location. We select the legal one by reversing the move variable if necessary.
if (empty(s1))
move = make_move(s2, s1);
if (ply > i)
return true;
// For nodes before or at the root, check that the move is a
// repetition rather than a move to the current position.
// In the cuckoo table, both moves Rc1c5 and Rc5c1 are stored in
// the same location, so we have to select which square to check.
if (color_of(piece_on(empty(s1) ? s2 : s1)) != side_to_move())
continue;
// For repetitions before or at the root, require one more
StateInfo* next_stp = stp;
for (int k = i + 2; k <= end; k += 2)
{
next_stp = next_stp->previous->previous;
if (next_stp->key == stp->key)
return true;
}
if (stp->repetition)
return true;
}
}
}
@@ -1297,15 +1282,15 @@ bool Position::pos_is_ok() const {
assert(0 && "pos_is_ok: Index");
}
for (Color c = WHITE; c <= BLACK; ++c)
for (CastlingSide s = KING_SIDE; s <= QUEEN_SIDE; s = CastlingSide(s + 1))
for (Color c : { WHITE, BLACK })
for (CastlingRights cr : {c & KING_SIDE, c & QUEEN_SIDE})
{
if (!can_castle(c | s))
if (!can_castle(cr))
continue;
if ( piece_on(castlingRookSquare[c | s]) != make_piece(c, ROOK)
|| castlingRightsMask[castlingRookSquare[c | s]] != (c | s)
|| (castlingRightsMask[square<KING>(c)] & (c | s)) != (c | s))
if ( piece_on(castlingRookSquare[cr]) != make_piece(c, ROOK)
|| castlingRightsMask[castlingRookSquare[cr]] != cr
|| (castlingRightsMask[square<KING>(c)] & cr) != cr)
assert(0 && "pos_is_ok: Castling");
}