mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-18 03:32:18 +01:00
DroidFish: Updated stockfish to the latest development version and included syzygy tablebases probing code.
This commit is contained in:
@@ -29,10 +29,10 @@ namespace {
|
||||
|
||||
// Polynomial material balance parameters
|
||||
|
||||
// pair pawn knight bishop rook queen
|
||||
const int LinearCoefficients[6] = { 1852, -162, -1122, -183, 249, -154 };
|
||||
// pair pawn knight bishop rook queen
|
||||
const int Linear[6] = { 1852, -162, -1122, -183, 249, -154 };
|
||||
|
||||
const int QuadraticCoefficientsSameSide[][PIECE_TYPE_NB] = {
|
||||
const int QuadraticSameSide[][PIECE_TYPE_NB] = {
|
||||
// OUR PIECES
|
||||
// pair pawn knight bishop rook queen
|
||||
{ 0 }, // Bishop pair
|
||||
@@ -43,7 +43,7 @@ namespace {
|
||||
{-177, 25, 129, 142, -137, 0 } // Queen
|
||||
};
|
||||
|
||||
const int QuadraticCoefficientsOppositeSide[][PIECE_TYPE_NB] = {
|
||||
const int QuadraticOppositeSide[][PIECE_TYPE_NB] = {
|
||||
// THEIR PIECES
|
||||
// pair pawn knight bishop rook queen
|
||||
{ 0 }, // Bishop pair
|
||||
@@ -66,8 +66,7 @@ namespace {
|
||||
// Helper templates used to detect a given material distribution
|
||||
template<Color Us> bool is_KXK(const Position& pos) {
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
return !pos.count<PAWN>(Them)
|
||||
&& pos.non_pawn_material(Them) == VALUE_ZERO
|
||||
return !more_than_one(pos.pieces(Them))
|
||||
&& pos.non_pawn_material(Us) >= RookValueMg;
|
||||
}
|
||||
|
||||
@@ -94,26 +93,24 @@ namespace {
|
||||
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
||||
int pt1, pt2, pc, v;
|
||||
int value = 0;
|
||||
int bonus = 0;
|
||||
|
||||
// Second-degree polynomial material imbalance by Tord Romstad
|
||||
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1)
|
||||
for (int pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; ++pt1)
|
||||
{
|
||||
pc = pieceCount[Us][pt1];
|
||||
if (!pc)
|
||||
if (!pieceCount[Us][pt1])
|
||||
continue;
|
||||
|
||||
v = LinearCoefficients[pt1];
|
||||
int v = Linear[pt1];
|
||||
|
||||
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
|
||||
v += QuadraticCoefficientsSameSide[pt1][pt2] * pieceCount[Us][pt2]
|
||||
+ QuadraticCoefficientsOppositeSide[pt1][pt2] * pieceCount[Them][pt2];
|
||||
for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
|
||||
v += QuadraticSameSide[pt1][pt2] * pieceCount[Us][pt2]
|
||||
+ QuadraticOppositeSide[pt1][pt2] * pieceCount[Them][pt2];
|
||||
|
||||
value += pc * v;
|
||||
bonus += pieceCount[Us][pt1] * v;
|
||||
}
|
||||
|
||||
return value;
|
||||
return bonus;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
@@ -139,7 +136,7 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
|
||||
std::memset(e, 0, sizeof(Entry));
|
||||
e->key = key;
|
||||
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
|
||||
e->gamePhase = game_phase(pos);
|
||||
e->gamePhase = pos.game_phase();
|
||||
|
||||
// Let's look if we have a specialized evaluation function for this particular
|
||||
// material configuration. Firstly we look for a fixed configuration one, then
|
||||
@@ -248,18 +245,4 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
|
||||
return e;
|
||||
}
|
||||
|
||||
|
||||
/// Material::game_phase() calculates the phase given the current
|
||||
/// position. Because the phase is strictly a function of the material, it
|
||||
/// is stored in MaterialEntry.
|
||||
|
||||
Phase game_phase(const Position& pos) {
|
||||
|
||||
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
|
||||
|
||||
return npm >= MidgameLimit ? PHASE_MIDGAME
|
||||
: npm <= EndgameLimit ? PHASE_ENDGAME
|
||||
: Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
|
||||
}
|
||||
|
||||
} // namespace Material
|
||||
|
||||
Reference in New Issue
Block a user