mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-18 03:32:18 +01:00
DroidFish: Updated Stockfish engine to version 5.
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@@ -29,6 +29,8 @@ using namespace Search;
|
||||
|
||||
ThreadPool Threads; // Global object
|
||||
|
||||
extern void check_time();
|
||||
|
||||
namespace {
|
||||
|
||||
// start_routine() is the C function which is called when a new thread
|
||||
@@ -38,7 +40,7 @@ namespace {
|
||||
|
||||
|
||||
// Helpers to launch a thread after creation and joining before delete. Must be
|
||||
// outside Thread c'tor and d'tor because object shall be fully initialized
|
||||
// outside Thread c'tor and d'tor because the object will be fully initialized
|
||||
// when start_routine (and hence virtual idle_loop) is called and when joining.
|
||||
|
||||
template<typename T> T* new_thread() {
|
||||
@@ -57,7 +59,7 @@ namespace {
|
||||
}
|
||||
|
||||
|
||||
// ThreadBase::notify_one() wakes up the thread when there is some work to do
|
||||
// notify_one() wakes up the thread when there is some work to do
|
||||
|
||||
void ThreadBase::notify_one() {
|
||||
|
||||
@@ -67,7 +69,7 @@ void ThreadBase::notify_one() {
|
||||
}
|
||||
|
||||
|
||||
// ThreadBase::wait_for() set the thread to sleep until condition 'b' turns true
|
||||
// wait_for() set the thread to sleep until condition 'b' turns true
|
||||
|
||||
void ThreadBase::wait_for(volatile const bool& b) {
|
||||
|
||||
@@ -77,8 +79,8 @@ void ThreadBase::wait_for(volatile const bool& b) {
|
||||
}
|
||||
|
||||
|
||||
// Thread c'tor just inits data but does not launch any thread of execution that
|
||||
// instead will be started only upon c'tor returns.
|
||||
// Thread c'tor just inits data and does not launch any execution thread.
|
||||
// Such a thread will only be started when c'tor returns.
|
||||
|
||||
Thread::Thread() /* : splitPoints() */ { // Value-initialization bug in MSVC
|
||||
|
||||
@@ -86,13 +88,47 @@ Thread::Thread() /* : splitPoints() */ { // Value-initialization bug in MSVC
|
||||
maxPly = splitPointsSize = 0;
|
||||
activeSplitPoint = NULL;
|
||||
activePosition = NULL;
|
||||
idx = Threads.size();
|
||||
idx = Threads.size(); // Starts from 0
|
||||
}
|
||||
|
||||
|
||||
// cutoff_occurred() checks whether a beta cutoff has occurred in the
|
||||
// current active split point, or in some ancestor of the split point.
|
||||
|
||||
bool Thread::cutoff_occurred() const {
|
||||
|
||||
for (SplitPoint* sp = activeSplitPoint; sp; sp = sp->parentSplitPoint)
|
||||
if (sp->cutoff)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Thread::available_to() checks whether the thread is available to help the
|
||||
// thread 'master' at a split point. An obvious requirement is that thread must
|
||||
// be idle. With more than two threads, this is not sufficient: If the thread is
|
||||
// the master of some split point, it is only available as a slave to the slaves
|
||||
// which are busy searching the split point at the top of slave's split point
|
||||
// stack (the "helpful master concept" in YBWC terminology).
|
||||
|
||||
bool Thread::available_to(const Thread* master) const {
|
||||
|
||||
if (searching)
|
||||
return false;
|
||||
|
||||
// Make a local copy to be sure it doesn't become zero under our feet while
|
||||
// testing next condition and so leading to an out of bounds access.
|
||||
int size = splitPointsSize;
|
||||
|
||||
// No split points means that the thread is available as a slave for any
|
||||
// other thread otherwise apply the "helpful master" concept if possible.
|
||||
return !size || splitPoints[size - 1].slavesMask.test(master->idx);
|
||||
}
|
||||
|
||||
|
||||
// TimerThread::idle_loop() is where the timer thread waits msec milliseconds
|
||||
// and then calls check_time(). If msec is 0 thread sleeps until is woken up.
|
||||
extern void check_time();
|
||||
// and then calls check_time(). If msec is 0 thread sleeps until it's woken up.
|
||||
|
||||
void TimerThread::idle_loop() {
|
||||
|
||||
@@ -112,7 +148,7 @@ void TimerThread::idle_loop() {
|
||||
|
||||
|
||||
// MainThread::idle_loop() is where the main thread is parked waiting to be started
|
||||
// when there is a new search. Main thread will launch all the slave threads.
|
||||
// when there is a new search. The main thread will launch all the slave threads.
|
||||
|
||||
void MainThread::idle_loop() {
|
||||
|
||||
@@ -124,7 +160,7 @@ void MainThread::idle_loop() {
|
||||
|
||||
while (!thinking && !exit)
|
||||
{
|
||||
Threads.sleepCondition.notify_one(); // Wake up UI thread if needed
|
||||
Threads.sleepCondition.notify_one(); // Wake up the UI thread if needed
|
||||
sleepCondition.wait(mutex);
|
||||
}
|
||||
|
||||
@@ -144,56 +180,21 @@ void MainThread::idle_loop() {
|
||||
}
|
||||
|
||||
|
||||
// Thread::cutoff_occurred() checks whether a beta cutoff has occurred in the
|
||||
// current active split point, or in some ancestor of the split point.
|
||||
|
||||
bool Thread::cutoff_occurred() const {
|
||||
|
||||
for (SplitPoint* sp = activeSplitPoint; sp; sp = sp->parentSplitPoint)
|
||||
if (sp->cutoff)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Thread::available_to() checks whether the thread is available to help the
|
||||
// thread 'master' at a split point. An obvious requirement is that thread must
|
||||
// be idle. With more than two threads, this is not sufficient: If the thread is
|
||||
// the master of some split point, it is only available as a slave to the slaves
|
||||
// which are busy searching the split point at the top of slaves split point
|
||||
// stack (the "helpful master concept" in YBWC terminology).
|
||||
|
||||
bool Thread::available_to(const Thread* master) const {
|
||||
|
||||
if (searching)
|
||||
return false;
|
||||
|
||||
// Make a local copy to be sure doesn't become zero under our feet while
|
||||
// testing next condition and so leading to an out of bound access.
|
||||
int size = splitPointsSize;
|
||||
|
||||
// No split points means that the thread is available as a slave for any
|
||||
// other thread otherwise apply the "helpful master" concept if possible.
|
||||
return !size || (splitPoints[size - 1].slavesMask & (1ULL << master->idx));
|
||||
}
|
||||
|
||||
|
||||
// init() is called at startup to create and launch requested threads, that will
|
||||
// go immediately to sleep due to 'sleepWhileIdle' set to true. We cannot use
|
||||
// a c'tor becuase Threads is a static object and we need a fully initialized
|
||||
// engine at this point due to allocation of Endgames in Thread c'tor.
|
||||
// go immediately to sleep. We cannot use a c'tor because Threads is a static
|
||||
// object and we need a fully initialized engine at this point due to allocation
|
||||
// of Endgames in Thread c'tor.
|
||||
|
||||
void ThreadPool::init() {
|
||||
|
||||
sleepWhileIdle = true;
|
||||
timer = new_thread<TimerThread>();
|
||||
push_back(new_thread<MainThread>());
|
||||
read_uci_options();
|
||||
}
|
||||
|
||||
|
||||
// exit() cleanly terminates the threads before the program exits
|
||||
// exit() cleanly terminates the threads before the program exits. Cannot be done in
|
||||
// d'tor because we have to terminate the threads before to free ThreadPool object.
|
||||
|
||||
void ThreadPool::exit() {
|
||||
|
||||
@@ -206,23 +207,20 @@ void ThreadPool::exit() {
|
||||
|
||||
// read_uci_options() updates internal threads parameters from the corresponding
|
||||
// UCI options and creates/destroys threads to match the requested number. Thread
|
||||
// objects are dynamically allocated to avoid creating in advance all possible
|
||||
// threads, with included pawns and material tables, if only few are used.
|
||||
// objects are dynamically allocated to avoid creating all possible threads
|
||||
// in advance (which include pawns and material tables), even if only a few
|
||||
// are to be used.
|
||||
|
||||
void ThreadPool::read_uci_options() {
|
||||
|
||||
maxThreadsPerSplitPoint = Options["Max Threads per Split Point"];
|
||||
minimumSplitDepth = Options["Min Split Depth"] * ONE_PLY;
|
||||
size_t requested = Options["Threads"];
|
||||
minimumSplitDepth = Options["Min Split Depth"] * ONE_PLY;
|
||||
size_t requested = Options["Threads"];
|
||||
|
||||
assert(requested > 0);
|
||||
|
||||
// Value 0 has a special meaning: We determine the optimal minimum split depth
|
||||
// automatically. Anyhow the minimumSplitDepth should never be under 4 plies.
|
||||
// If zero (default) then set best minimum split depth automatically
|
||||
if (!minimumSplitDepth)
|
||||
minimumSplitDepth = (requested < 8 ? 4 : 7) * ONE_PLY;
|
||||
else
|
||||
minimumSplitDepth = std::max(4 * ONE_PLY, minimumSplitDepth);
|
||||
minimumSplitDepth = requested < 8 ? 4 * ONE_PLY : 7 * ONE_PLY;
|
||||
|
||||
while (size() < requested)
|
||||
push_back(new_thread<Thread>());
|
||||
@@ -235,7 +233,7 @@ void ThreadPool::read_uci_options() {
|
||||
}
|
||||
|
||||
|
||||
// slave_available() tries to find an idle thread which is available as a slave
|
||||
// available_slave() tries to find an idle thread which is available as a slave
|
||||
// for the thread 'master'.
|
||||
|
||||
Thread* ThreadPool::available_slave(const Thread* master) const {
|
||||
@@ -259,12 +257,11 @@ Thread* ThreadPool::available_slave(const Thread* master) const {
|
||||
|
||||
template <bool Fake>
|
||||
void Thread::split(Position& pos, const Stack* ss, Value alpha, Value beta, Value* bestValue,
|
||||
Move* bestMove, Depth depth, Move threatMove, int moveCount,
|
||||
Move* bestMove, Depth depth, int moveCount,
|
||||
MovePicker* movePicker, int nodeType, bool cutNode) {
|
||||
|
||||
assert(pos.pos_is_ok());
|
||||
assert(*bestValue <= alpha && alpha < beta && beta <= VALUE_INFINITE);
|
||||
assert(*bestValue > -VALUE_INFINITE);
|
||||
assert(-VALUE_INFINITE < *bestValue && *bestValue <= alpha && alpha < beta && beta <= VALUE_INFINITE);
|
||||
assert(depth >= Threads.minimumSplitDepth);
|
||||
assert(searching);
|
||||
assert(splitPointsSize < MAX_SPLITPOINTS_PER_THREAD);
|
||||
@@ -274,11 +271,10 @@ void Thread::split(Position& pos, const Stack* ss, Value alpha, Value beta, Valu
|
||||
|
||||
sp.masterThread = this;
|
||||
sp.parentSplitPoint = activeSplitPoint;
|
||||
sp.slavesMask = 1ULL << idx;
|
||||
sp.slavesMask = 0, sp.slavesMask.set(idx);
|
||||
sp.depth = depth;
|
||||
sp.bestValue = *bestValue;
|
||||
sp.bestMove = *bestMove;
|
||||
sp.threatMove = threatMove;
|
||||
sp.alpha = alpha;
|
||||
sp.beta = beta;
|
||||
sp.nodeType = nodeType;
|
||||
@@ -296,44 +292,40 @@ void Thread::split(Position& pos, const Stack* ss, Value alpha, Value beta, Valu
|
||||
Threads.mutex.lock();
|
||||
sp.mutex.lock();
|
||||
|
||||
sp.allSlavesSearching = true; // Must be set under lock protection
|
||||
++splitPointsSize;
|
||||
activeSplitPoint = &sp;
|
||||
activePosition = NULL;
|
||||
|
||||
size_t slavesCnt = 1; // This thread is always included
|
||||
Thread* slave;
|
||||
|
||||
while ( (slave = Threads.available_slave(this)) != NULL
|
||||
&& ++slavesCnt <= Threads.maxThreadsPerSplitPoint && !Fake)
|
||||
{
|
||||
sp.slavesMask |= 1ULL << slave->idx;
|
||||
slave->activeSplitPoint = &sp;
|
||||
slave->searching = true; // Slave leaves idle_loop()
|
||||
slave->notify_one(); // Could be sleeping
|
||||
}
|
||||
if (!Fake)
|
||||
for (Thread* slave; (slave = Threads.available_slave(this)) != NULL; )
|
||||
{
|
||||
sp.slavesMask.set(slave->idx);
|
||||
slave->activeSplitPoint = &sp;
|
||||
slave->searching = true; // Slave leaves idle_loop()
|
||||
slave->notify_one(); // Could be sleeping
|
||||
}
|
||||
|
||||
// Everything is set up. The master thread enters the idle loop, from which
|
||||
// it will instantly launch a search, because its 'searching' flag is set.
|
||||
// The thread will return from the idle loop when all slaves have finished
|
||||
// their work at this split point.
|
||||
if (slavesCnt > 1 || Fake)
|
||||
{
|
||||
sp.mutex.unlock();
|
||||
Threads.mutex.unlock();
|
||||
sp.mutex.unlock();
|
||||
Threads.mutex.unlock();
|
||||
|
||||
Thread::idle_loop(); // Force a call to base class idle_loop()
|
||||
Thread::idle_loop(); // Force a call to base class idle_loop()
|
||||
|
||||
// In helpful master concept a master can help only a sub-tree of its split
|
||||
// point, and because here is all finished is not possible master is booked.
|
||||
assert(!searching);
|
||||
assert(!activePosition);
|
||||
// In the helpful master concept, a master can help only a sub-tree of its
|
||||
// split point and because everything is finished here, it's not possible
|
||||
// for the master to be booked.
|
||||
assert(!searching);
|
||||
assert(!activePosition);
|
||||
|
||||
// We have returned from the idle loop, which means that all threads are
|
||||
// finished. Note that setting 'searching' and decreasing splitPointsSize is
|
||||
// done under lock protection to avoid a race with Thread::available_to().
|
||||
Threads.mutex.lock();
|
||||
sp.mutex.lock();
|
||||
}
|
||||
// We have returned from the idle loop, which means that all threads are
|
||||
// finished. Note that setting 'searching' and decreasing splitPointsSize is
|
||||
// done under lock protection to avoid a race with Thread::available_to().
|
||||
Threads.mutex.lock();
|
||||
sp.mutex.lock();
|
||||
|
||||
searching = true;
|
||||
--splitPointsSize;
|
||||
@@ -348,8 +340,8 @@ void Thread::split(Position& pos, const Stack* ss, Value alpha, Value beta, Valu
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template void Thread::split<false>(Position&, const Stack*, Value, Value, Value*, Move*, Depth, Move, int, MovePicker*, int, bool);
|
||||
template void Thread::split< true>(Position&, const Stack*, Value, Value, Value*, Move*, Depth, Move, int, MovePicker*, int, bool);
|
||||
template void Thread::split<false>(Position&, const Stack*, Value, Value, Value*, Move*, Depth, int, MovePicker*, int, bool);
|
||||
template void Thread::split< true>(Position&, const Stack*, Value, Value, Value*, Move*, Depth, int, MovePicker*, int, bool);
|
||||
|
||||
|
||||
// wait_for_think_finished() waits for main thread to go to sleep then returns
|
||||
@@ -366,8 +358,8 @@ void ThreadPool::wait_for_think_finished() {
|
||||
// start_thinking() wakes up the main thread sleeping in MainThread::idle_loop()
|
||||
// so to start a new search, then returns immediately.
|
||||
|
||||
void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits,
|
||||
const std::vector<Move>& searchMoves, StateStackPtr& states) {
|
||||
void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits, StateStackPtr& states) {
|
||||
|
||||
wait_for_think_finished();
|
||||
|
||||
SearchTime = Time::now(); // As early as possible
|
||||
@@ -385,8 +377,8 @@ void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits,
|
||||
}
|
||||
|
||||
for (MoveList<LEGAL> it(pos); *it; ++it)
|
||||
if ( searchMoves.empty()
|
||||
|| std::count(searchMoves.begin(), searchMoves.end(), *it))
|
||||
if ( limits.searchmoves.empty()
|
||||
|| std::count(limits.searchmoves.begin(), limits.searchmoves.end(), *it))
|
||||
RootMoves.push_back(RootMove(*it));
|
||||
|
||||
main()->thinking = true;
|
||||
|
||||
Reference in New Issue
Block a user