DroidFish: Updated Stockfish engine to version 5.

This commit is contained in:
Peter Osterlund
2014-05-31 12:23:03 +00:00
parent 93d521c75e
commit 5d723926b0
41 changed files with 2187 additions and 2592 deletions

View File

@@ -1,7 +1,7 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -18,12 +18,10 @@
*/
#include <algorithm>
#include <cstring>
#include <iostream>
#include <cstring> // For memset
#include "bitboard.h"
#include "bitcount.h"
#include "misc.h"
#include "rkiss.h"
CACHE_LINE_ALIGNMENT
@@ -81,8 +79,8 @@ namespace {
}
}
/// lsb()/msb() finds the least/most significant bit in a nonzero bitboard.
/// pop_lsb() finds and clears the least significant bit in a nonzero bitboard.
/// lsb()/msb() finds the least/most significant bit in a non-zero bitboard.
/// pop_lsb() finds and clears the least significant bit in a non-zero bitboard.
#ifndef USE_BSFQ
@@ -120,55 +118,47 @@ Square msb(Bitboard b) {
result += 8;
}
return (Square)(result + MS1BTable[b32]);
return Square(result + MS1BTable[b32]);
}
#endif // ifndef USE_BSFQ
/// Bitboards::print() prints a bitboard in an easily readable format to the
/// standard output. This is sometimes useful for debugging.
/// Bitboards::pretty() returns an ASCII representation of a bitboard to be
/// printed to standard output. This is sometimes useful for debugging.
void Bitboards::print(Bitboard b) {
const std::string Bitboards::pretty(Bitboard b) {
sync_cout;
std::string s = "+---+---+---+---+---+---+---+---+\n";
for (Rank rank = RANK_8; rank >= RANK_1; --rank)
for (Rank r = RANK_8; r >= RANK_1; --r)
{
std::cout << "+---+---+---+---+---+---+---+---+" << '\n';
for (File f = FILE_A; f <= FILE_H; ++f)
s.append(b & make_square(f, r) ? "| X " : "| ");
for (File file = FILE_A; file <= FILE_H; ++file)
std::cout << "| " << (b & (file | rank) ? "X " : " ");
std::cout << "|\n";
s.append("|\n+---+---+---+---+---+---+---+---+\n");
}
std::cout << "+---+---+---+---+---+---+---+---+" << sync_endl;
return s;
}
/// Bitboards::init() initializes various bitboard arrays. It is called during
/// program initialization.
/// Bitboards::init() initializes various bitboard tables. It is called at
/// startup and relies on global objects to be already zero-initialized.
void Bitboards::init() {
for (int k = 0, i = 0; i < 8; ++i)
while (k < (2 << i))
MS1BTable[k++] = i;
for (int i = 0; i < 64; ++i)
BSFTable[bsf_index(1ULL << i)] = Square(i);
for (Square s = SQ_A1; s <= SQ_H8; ++s)
SquareBB[s] = 1ULL << s;
BSFTable[bsf_index(SquareBB[s] = 1ULL << s)] = s;
FileBB[FILE_A] = FileABB;
RankBB[RANK_1] = Rank1BB;
for (Bitboard b = 1; b < 256; ++b)
MS1BTable[b] = more_than_one(b) ? MS1BTable[b - 1] : lsb(b);
for (int i = 1; i < 8; ++i)
{
FileBB[i] = FileBB[i - 1] << 1;
RankBB[i] = RankBB[i - 1] << 8;
}
for (File f = FILE_A; f <= FILE_H; ++f)
FileBB[f] = f > FILE_A ? FileBB[f - 1] << 1 : FileABB;
for (Rank r = RANK_1; r <= RANK_8; ++r)
RankBB[r] = r > RANK_1 ? RankBB[r - 1] << 8 : Rank1BB;
for (File f = FILE_A; f <= FILE_H; ++f)
AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
@@ -186,11 +176,11 @@ void Bitboards::init() {
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
{
SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2));
if (s1 != s2)
DistanceRingsBB[s1][SquareDistance[s1][s2] - 1] |= s2;
}
{
SquareDistance[s1][s2] = std::max(file_distance(s1, s2), rank_distance(s1, s2));
DistanceRingsBB[s1][SquareDistance[s1][s2] - 1] |= s2;
}
int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
{}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
@@ -198,9 +188,9 @@ void Bitboards::init() {
for (Color c = WHITE; c <= BLACK; ++c)
for (PieceType pt = PAWN; pt <= KING; ++pt)
for (Square s = SQ_A1; s <= SQ_H8; ++s)
for (int k = 0; steps[pt][k]; ++k)
for (int i = 0; steps[pt][i]; ++i)
{
Square to = s + Square(c == WHITE ? steps[pt][k] : -steps[pt][k]);
Square to = s + Square(c == WHITE ? steps[pt][i] : -steps[pt][i]);
if (is_ok(to) && square_distance(s, to) < 3)
StepAttacksBB[make_piece(c, pt)][s] |= to;
@@ -212,24 +202,23 @@ void Bitboards::init() {
init_magics(RTable, RAttacks, RMagics, RMasks, RShifts, RDeltas, magic_index<ROOK>);
init_magics(BTable, BAttacks, BMagics, BMasks, BShifts, BDeltas, magic_index<BISHOP>);
for (Square s = SQ_A1; s <= SQ_H8; ++s)
{
PseudoAttacks[QUEEN][s] = PseudoAttacks[BISHOP][s] = attacks_bb<BISHOP>(s, 0);
PseudoAttacks[QUEEN][s] |= PseudoAttacks[ ROOK][s] = attacks_bb< ROOK>(s, 0);
}
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
{
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0);
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
if (PseudoAttacks[QUEEN][s1] & s2)
{
Square delta = (s2 - s1) / square_distance(s1, s2);
{
Piece pc = (PseudoAttacks[BISHOP][s1] & s2) ? W_BISHOP :
(PseudoAttacks[ROOK][s1] & s2) ? W_ROOK : NO_PIECE;
for (Square s = s1 + delta; s != s2; s += delta)
BetweenBB[s1][s2] |= s;
if (pc == NO_PIECE)
continue;
PieceType pt = (PseudoAttacks[BISHOP][s1] & s2) ? BISHOP : ROOK;
LineBB[s1][s2] = (PseudoAttacks[pt][s1] & PseudoAttacks[pt][s2]) | s1 | s2;
}
LineBB[s1][s2] = (attacks_bb(pc, s1, 0) & attacks_bb(pc, s2, 0)) | s1 | s2;
BetweenBB[s1][s2] = attacks_bb(pc, s1, SquareBB[s2]) & attacks_bb(pc, s2, SquareBB[s1]);
}
}
}
@@ -254,20 +243,6 @@ namespace {
}
Bitboard pick_random(RKISS& rk, int booster) {
// Values s1 and s2 are used to rotate the candidate magic of a
// quantity known to be the optimal to quickly find the magics.
int s1 = booster & 63, s2 = (booster >> 6) & 63;
Bitboard m = rk.rand<Bitboard>();
m = (m >> s1) | (m << (64 - s1));
m &= rk.rand<Bitboard>();
m = (m >> s2) | (m << (64 - s2));
return m & rk.rand<Bitboard>();
}
// init_magics() computes all rook and bishop attacks at startup. Magic
// bitboards are used to look up attacks of sliding pieces. As a reference see
// chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
@@ -276,8 +251,9 @@ namespace {
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) {
int MagicBoosters[][8] = { { 3191, 2184, 1310, 3618, 2091, 1308, 2452, 3996 },
{ 1059, 3608, 605, 3234, 3326, 38, 2029, 3043 } };
int MagicBoosters[][8] = { { 969, 1976, 2850, 542, 2069, 2852, 1708, 164 },
{ 3101, 552, 3555, 926, 834, 26, 2131, 1117 } };
RKISS rk;
Bitboard occupancy[4096], reference[4096], edges, b;
int i, size, booster;
@@ -303,7 +279,12 @@ namespace {
b = size = 0;
do {
occupancy[size] = b;
reference[size++] = sliding_attack(deltas, s, b);
reference[size] = sliding_attack(deltas, s, b);
if (HasPext)
attacks[s][_pext_u64(b, masks[s])] = reference[size];
size++;
b = (b - masks[s]) & masks[s];
} while (b);
@@ -312,12 +293,15 @@ namespace {
if (s < SQ_H8)
attacks[s + 1] = attacks[s] + size;
if (HasPext)
continue;
booster = MagicBoosters[Is64Bit][rank_of(s)];
// Find a magic for square 's' picking up an (almost) random number
// until we find the one that passes the verification test.
do {
do magics[s] = pick_random(rk, booster);
do magics[s] = rk.magic_rand<Bitboard>(booster);
while (popcount<Max15>((magics[s] * masks[s]) >> 56) < 6);
std::memset(attacks[s], 0, size * sizeof(Bitboard));
@@ -333,11 +317,11 @@ namespace {
if (attack && attack != reference[i])
break;
assert(reference[i] != 0);
assert(reference[i]);
attack = reference[i];
}
} while (i != size);
} while (i < size);
}
}
}