DroidFish: Updated stockfish engine to version DD.

This commit is contained in:
Peter Osterlund
2013-11-30 19:12:34 +00:00
parent ef2ea196b4
commit 43e92323e4
31 changed files with 940 additions and 1245 deletions

View File

@@ -17,8 +17,8 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cmath>
#include <algorithm>
#include <cmath>
#include "search.h"
#include "timeman.h"
@@ -29,8 +29,8 @@ namespace {
/// Constants
const int MoveHorizon = 50; // Plan time management at most this many moves ahead
const float MaxRatio = 7.0f; // When in trouble, we can step over reserved time with this ratio
const float StealRatio = 0.33f; // However we must not steal time from remaining moves over this ratio
const double MaxRatio = 7.0; // When in trouble, we can step over reserved time with this ratio
const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio
// MoveImportance[] is based on naive statistical analysis of "how many games are still undecided
@@ -76,10 +76,9 @@ namespace {
}
void TimeManager::pv_instability(int curChanges, int prevChanges) {
void TimeManager::pv_instability(double bestMoveChanges) {
unstablePVExtraTime = curChanges * (optimumSearchTime / 2)
+ prevChanges * (optimumSearchTime / 3);
unstablePVExtraTime = int(bestMoveChanges * optimumSearchTime / 1.4);
}
@@ -115,7 +114,7 @@ void TimeManager::init(const Search::LimitsType& limits, int currentPly, Color u
// We calculate optimum time usage for different hypothetic "moves to go"-values and choose the
// minimum of calculated search time values. Usually the greatest hypMTG gives the minimum values.
for (hypMTG = 1; hypMTG <= (limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon); hypMTG++)
for (hypMTG = 1; hypMTG <= (limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon); ++hypMTG)
{
// Calculate thinking time for hypothetic "moves to go"-value
hypMyTime = limits.time[us]
@@ -145,17 +144,17 @@ namespace {
template<TimeType T>
int remaining(int myTime, int movesToGo, int currentPly, int slowMover)
{
const float TMaxRatio = (T == OptimumTime ? 1 : MaxRatio);
const float TStealRatio = (T == OptimumTime ? 0 : StealRatio);
const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio);
const double TStealRatio = (T == OptimumTime ? 0 : StealRatio);
int thisMoveImportance = move_importance(currentPly) * slowMover / 100;
double thisMoveImportance = double(move_importance(currentPly) * slowMover) / 100;
int otherMovesImportance = 0;
for (int i = 1; i < movesToGo; i++)
for (int i = 1; i < movesToGo; ++i)
otherMovesImportance += move_importance(currentPly + 2 * i);
float ratio1 = (TMaxRatio * thisMoveImportance) / float(TMaxRatio * thisMoveImportance + otherMovesImportance);
float ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / float(thisMoveImportance + otherMovesImportance);
double ratio1 = (TMaxRatio * thisMoveImportance) / (TMaxRatio * thisMoveImportance + otherMovesImportance);
double ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / (thisMoveImportance + otherMovesImportance);
return int(floor(myTime * std::min(ratio1, ratio2)));
}