mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-17 19:22:18 +01:00
DroidFish: Updated stockfish engine to development version 2017-09-06.
This commit is contained in:
@@ -2,7 +2,7 @@
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
|
||||
Copyright (C) 2015-2017 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@@ -26,29 +26,22 @@
|
||||
uint8_t PopCnt16[1 << 16];
|
||||
int SquareDistance[SQUARE_NB][SQUARE_NB];
|
||||
|
||||
Bitboard RookMasks [SQUARE_NB];
|
||||
Bitboard RookMagics [SQUARE_NB];
|
||||
Bitboard* RookAttacks[SQUARE_NB];
|
||||
unsigned RookShifts [SQUARE_NB];
|
||||
|
||||
Bitboard BishopMasks [SQUARE_NB];
|
||||
Bitboard BishopMagics [SQUARE_NB];
|
||||
Bitboard* BishopAttacks[SQUARE_NB];
|
||||
unsigned BishopShifts [SQUARE_NB];
|
||||
|
||||
Bitboard SquareBB[SQUARE_NB];
|
||||
Bitboard FileBB[FILE_NB];
|
||||
Bitboard RankBB[RANK_NB];
|
||||
Bitboard AdjacentFilesBB[FILE_NB];
|
||||
Bitboard InFrontBB[COLOR_NB][RANK_NB];
|
||||
Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
|
||||
Bitboard ForwardRanksBB[COLOR_NB][RANK_NB];
|
||||
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
|
||||
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
|
||||
Bitboard DistanceRingBB[SQUARE_NB][8];
|
||||
Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
|
||||
Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB];
|
||||
Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
|
||||
Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
|
||||
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
|
||||
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
|
||||
|
||||
Magic RookMagics[SQUARE_NB];
|
||||
Magic BishopMagics[SQUARE_NB];
|
||||
|
||||
namespace {
|
||||
|
||||
@@ -61,10 +54,7 @@ namespace {
|
||||
Bitboard RookTable[0x19000]; // To store rook attacks
|
||||
Bitboard BishopTable[0x1480]; // To store bishop attacks
|
||||
|
||||
typedef unsigned (Fn)(Square, Bitboard);
|
||||
|
||||
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
|
||||
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index);
|
||||
void init_magics(Bitboard table[], Magic magics[], Square deltas[]);
|
||||
|
||||
// bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses
|
||||
// Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch.
|
||||
@@ -173,14 +163,14 @@ void Bitboards::init() {
|
||||
AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
|
||||
|
||||
for (Rank r = RANK_1; r < RANK_8; ++r)
|
||||
InFrontBB[WHITE][r] = ~(InFrontBB[BLACK][r + 1] = InFrontBB[BLACK][r] | RankBB[r]);
|
||||
ForwardRanksBB[WHITE][r] = ~(ForwardRanksBB[BLACK][r + 1] = ForwardRanksBB[BLACK][r] | RankBB[r]);
|
||||
|
||||
for (Color c = WHITE; c <= BLACK; ++c)
|
||||
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
||||
{
|
||||
ForwardBB[c][s] = InFrontBB[c][rank_of(s)] & FileBB[file_of(s)];
|
||||
PawnAttackSpan[c][s] = InFrontBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
|
||||
PassedPawnMask[c][s] = ForwardBB[c][s] | PawnAttackSpan[c][s];
|
||||
ForwardFileBB [c][s] = ForwardRanksBB[c][rank_of(s)] & FileBB[file_of(s)];
|
||||
PawnAttackSpan[c][s] = ForwardRanksBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
|
||||
PassedPawnMask[c][s] = ForwardFileBB [c][s] | PawnAttackSpan[c][s];
|
||||
}
|
||||
|
||||
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
|
||||
@@ -191,39 +181,43 @@ void Bitboards::init() {
|
||||
DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2;
|
||||
}
|
||||
|
||||
int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
|
||||
{}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
|
||||
int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } };
|
||||
|
||||
for (Color c = WHITE; c <= BLACK; ++c)
|
||||
for (PieceType pt = PAWN; pt <= KING; ++pt)
|
||||
for (PieceType pt : { PAWN, KNIGHT, KING })
|
||||
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
||||
for (int i = 0; steps[pt][i]; ++i)
|
||||
{
|
||||
Square to = s + Square(c == WHITE ? steps[pt][i] : -steps[pt][i]);
|
||||
|
||||
if (is_ok(to) && distance(s, to) < 3)
|
||||
StepAttacksBB[make_piece(c, pt)][s] |= to;
|
||||
{
|
||||
if (pt == PAWN)
|
||||
PawnAttacks[c][s] |= to;
|
||||
else
|
||||
PseudoAttacks[pt][s] |= to;
|
||||
}
|
||||
}
|
||||
|
||||
Square RookDeltas[] = { NORTH, EAST, SOUTH, WEST };
|
||||
Square RookDeltas[] = { NORTH, EAST, SOUTH, WEST };
|
||||
Square BishopDeltas[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST };
|
||||
|
||||
init_magics(RookTable, RookAttacks, RookMagics, RookMasks, RookShifts, RookDeltas, magic_index<ROOK>);
|
||||
init_magics(BishopTable, BishopAttacks, BishopMagics, BishopMasks, BishopShifts, BishopDeltas, magic_index<BISHOP>);
|
||||
init_magics(RookTable, RookMagics, RookDeltas);
|
||||
init_magics(BishopTable, BishopMagics, BishopDeltas);
|
||||
|
||||
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
|
||||
{
|
||||
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
|
||||
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0);
|
||||
|
||||
for (Piece pc = W_BISHOP; pc <= W_ROOK; ++pc)
|
||||
for (PieceType pt : { BISHOP, ROOK })
|
||||
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
|
||||
{
|
||||
if (!(PseudoAttacks[pc][s1] & s2))
|
||||
if (!(PseudoAttacks[pt][s1] & s2))
|
||||
continue;
|
||||
|
||||
LineBB[s1][s2] = (attacks_bb(pc, s1, 0) & attacks_bb(pc, s2, 0)) | s1 | s2;
|
||||
BetweenBB[s1][s2] = attacks_bb(pc, s1, SquareBB[s2]) & attacks_bb(pc, s2, SquareBB[s1]);
|
||||
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
|
||||
BetweenBB[s1][s2] = attacks_bb(pt, s1, SquareBB[s2]) & attacks_bb(pt, s2, SquareBB[s1]);
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -255,17 +249,14 @@ namespace {
|
||||
// chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
|
||||
// use the so called "fancy" approach.
|
||||
|
||||
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
|
||||
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) {
|
||||
void init_magics(Bitboard table[], Magic magics[], Square deltas[]) {
|
||||
|
||||
// Optimal PRNG seeds to pick the correct magics in the shortest time
|
||||
int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 },
|
||||
{ 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } };
|
||||
|
||||
Bitboard occupancy[4096], reference[4096], edges, b;
|
||||
int age[4096] = {0}, current = 0, i, size;
|
||||
|
||||
// attacks[s] is a pointer to the beginning of the attacks table for square 's'
|
||||
attacks[SQ_A1] = table;
|
||||
int epoch[4096] = {}, cnt = 0, size = 0;
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; ++s)
|
||||
{
|
||||
@@ -277,8 +268,13 @@ namespace {
|
||||
// all the attacks for each possible subset of the mask and so is 2 power
|
||||
// the number of 1s of the mask. Hence we deduce the size of the shift to
|
||||
// apply to the 64 or 32 bits word to get the index.
|
||||
masks[s] = sliding_attack(deltas, s, 0) & ~edges;
|
||||
shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]);
|
||||
Magic& m = magics[s];
|
||||
m.mask = sliding_attack(deltas, s, 0) & ~edges;
|
||||
m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
|
||||
|
||||
// Set the offset for the attacks table of the square. We have individual
|
||||
// table sizes for each square with "Fancy Magic Bitboards".
|
||||
m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
|
||||
|
||||
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
|
||||
// store the corresponding sliding attack bitboard in reference[].
|
||||
@@ -288,17 +284,12 @@ namespace {
|
||||
reference[size] = sliding_attack(deltas, s, b);
|
||||
|
||||
if (HasPext)
|
||||
attacks[s][pext(b, masks[s])] = reference[size];
|
||||
m.attacks[pext(b, m.mask)] = reference[size];
|
||||
|
||||
size++;
|
||||
b = (b - masks[s]) & masks[s];
|
||||
b = (b - m.mask) & m.mask;
|
||||
} while (b);
|
||||
|
||||
// Set the offset for the table of the next square. We have individual
|
||||
// table sizes for each square with "Fancy Magic Bitboards".
|
||||
if (s < SQ_H8)
|
||||
attacks[s + 1] = attacks[s] + size;
|
||||
|
||||
if (HasPext)
|
||||
continue;
|
||||
|
||||
@@ -306,28 +297,30 @@ namespace {
|
||||
|
||||
// Find a magic for square 's' picking up an (almost) random number
|
||||
// until we find the one that passes the verification test.
|
||||
do {
|
||||
do
|
||||
magics[s] = rng.sparse_rand<Bitboard>();
|
||||
while (popcount((magics[s] * masks[s]) >> 56) < 6);
|
||||
for (int i = 0; i < size; )
|
||||
{
|
||||
for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
|
||||
m.magic = rng.sparse_rand<Bitboard>();
|
||||
|
||||
// A good magic must map every possible occupancy to an index that
|
||||
// looks up the correct sliding attack in the attacks[s] database.
|
||||
// Note that we build up the database for square 's' as a side
|
||||
// effect of verifying the magic.
|
||||
for (++current, i = 0; i < size; ++i)
|
||||
// effect of verifying the magic. Keep track of the attempt count
|
||||
// and save it in epoch[], little speed-up trick to avoid resetting
|
||||
// m.attacks[] after every failed attempt.
|
||||
for (++cnt, i = 0; i < size; ++i)
|
||||
{
|
||||
unsigned idx = index(s, occupancy[i]);
|
||||
unsigned idx = m.index(occupancy[i]);
|
||||
|
||||
if (age[idx] < current)
|
||||
if (epoch[idx] < cnt)
|
||||
{
|
||||
age[idx] = current;
|
||||
attacks[s][idx] = reference[i];
|
||||
epoch[idx] = cnt;
|
||||
m.attacks[idx] = reference[i];
|
||||
}
|
||||
else if (attacks[s][idx] != reference[i])
|
||||
else if (m.attacks[idx] != reference[i])
|
||||
break;
|
||||
}
|
||||
} while (i < size);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user