DroidFish: Updated stockfish engine to development version 2017-09-06.

This commit is contained in:
Peter Osterlund
2017-09-10 10:30:09 +02:00
parent c0b69b6bf8
commit 3536c6290a
42 changed files with 3431 additions and 4042 deletions

View File

@@ -2,7 +2,7 @@
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Copyright (C) 2015-2016 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
Copyright (C) 2015-2017 Marco Costalba, Joona Kiiski, Gary Linscott, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -26,29 +26,22 @@
uint8_t PopCnt16[1 << 16];
int SquareDistance[SQUARE_NB][SQUARE_NB];
Bitboard RookMasks [SQUARE_NB];
Bitboard RookMagics [SQUARE_NB];
Bitboard* RookAttacks[SQUARE_NB];
unsigned RookShifts [SQUARE_NB];
Bitboard BishopMasks [SQUARE_NB];
Bitboard BishopMagics [SQUARE_NB];
Bitboard* BishopAttacks[SQUARE_NB];
unsigned BishopShifts [SQUARE_NB];
Bitboard SquareBB[SQUARE_NB];
Bitboard FileBB[FILE_NB];
Bitboard RankBB[RANK_NB];
Bitboard AdjacentFilesBB[FILE_NB];
Bitboard InFrontBB[COLOR_NB][RANK_NB];
Bitboard StepAttacksBB[PIECE_NB][SQUARE_NB];
Bitboard ForwardRanksBB[COLOR_NB][RANK_NB];
Bitboard BetweenBB[SQUARE_NB][SQUARE_NB];
Bitboard LineBB[SQUARE_NB][SQUARE_NB];
Bitboard DistanceRingBB[SQUARE_NB][8];
Bitboard ForwardBB[COLOR_NB][SQUARE_NB];
Bitboard ForwardFileBB[COLOR_NB][SQUARE_NB];
Bitboard PassedPawnMask[COLOR_NB][SQUARE_NB];
Bitboard PawnAttackSpan[COLOR_NB][SQUARE_NB];
Bitboard PseudoAttacks[PIECE_TYPE_NB][SQUARE_NB];
Bitboard PawnAttacks[COLOR_NB][SQUARE_NB];
Magic RookMagics[SQUARE_NB];
Magic BishopMagics[SQUARE_NB];
namespace {
@@ -61,10 +54,7 @@ namespace {
Bitboard RookTable[0x19000]; // To store rook attacks
Bitboard BishopTable[0x1480]; // To store bishop attacks
typedef unsigned (Fn)(Square, Bitboard);
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index);
void init_magics(Bitboard table[], Magic magics[], Square deltas[]);
// bsf_index() returns the index into BSFTable[] to look up the bitscan. Uses
// Matt Taylor's folding for 32 bit case, extended to 64 bit by Kim Walisch.
@@ -173,14 +163,14 @@ void Bitboards::init() {
AdjacentFilesBB[f] = (f > FILE_A ? FileBB[f - 1] : 0) | (f < FILE_H ? FileBB[f + 1] : 0);
for (Rank r = RANK_1; r < RANK_8; ++r)
InFrontBB[WHITE][r] = ~(InFrontBB[BLACK][r + 1] = InFrontBB[BLACK][r] | RankBB[r]);
ForwardRanksBB[WHITE][r] = ~(ForwardRanksBB[BLACK][r + 1] = ForwardRanksBB[BLACK][r] | RankBB[r]);
for (Color c = WHITE; c <= BLACK; ++c)
for (Square s = SQ_A1; s <= SQ_H8; ++s)
{
ForwardBB[c][s] = InFrontBB[c][rank_of(s)] & FileBB[file_of(s)];
PawnAttackSpan[c][s] = InFrontBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
PassedPawnMask[c][s] = ForwardBB[c][s] | PawnAttackSpan[c][s];
ForwardFileBB [c][s] = ForwardRanksBB[c][rank_of(s)] & FileBB[file_of(s)];
PawnAttackSpan[c][s] = ForwardRanksBB[c][rank_of(s)] & AdjacentFilesBB[file_of(s)];
PassedPawnMask[c][s] = ForwardFileBB [c][s] | PawnAttackSpan[c][s];
}
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
@@ -191,39 +181,43 @@ void Bitboards::init() {
DistanceRingBB[s1][SquareDistance[s1][s2] - 1] |= s2;
}
int steps[][9] = { {}, { 7, 9 }, { 17, 15, 10, 6, -6, -10, -15, -17 },
{}, {}, {}, { 9, 7, -7, -9, 8, 1, -1, -8 } };
int steps[][5] = { {}, { 7, 9 }, { 6, 10, 15, 17 }, {}, {}, {}, { 1, 7, 8, 9 } };
for (Color c = WHITE; c <= BLACK; ++c)
for (PieceType pt = PAWN; pt <= KING; ++pt)
for (PieceType pt : { PAWN, KNIGHT, KING })
for (Square s = SQ_A1; s <= SQ_H8; ++s)
for (int i = 0; steps[pt][i]; ++i)
{
Square to = s + Square(c == WHITE ? steps[pt][i] : -steps[pt][i]);
if (is_ok(to) && distance(s, to) < 3)
StepAttacksBB[make_piece(c, pt)][s] |= to;
{
if (pt == PAWN)
PawnAttacks[c][s] |= to;
else
PseudoAttacks[pt][s] |= to;
}
}
Square RookDeltas[] = { NORTH, EAST, SOUTH, WEST };
Square RookDeltas[] = { NORTH, EAST, SOUTH, WEST };
Square BishopDeltas[] = { NORTH_EAST, SOUTH_EAST, SOUTH_WEST, NORTH_WEST };
init_magics(RookTable, RookAttacks, RookMagics, RookMasks, RookShifts, RookDeltas, magic_index<ROOK>);
init_magics(BishopTable, BishopAttacks, BishopMagics, BishopMasks, BishopShifts, BishopDeltas, magic_index<BISHOP>);
init_magics(RookTable, RookMagics, RookDeltas);
init_magics(BishopTable, BishopMagics, BishopDeltas);
for (Square s1 = SQ_A1; s1 <= SQ_H8; ++s1)
{
PseudoAttacks[QUEEN][s1] = PseudoAttacks[BISHOP][s1] = attacks_bb<BISHOP>(s1, 0);
PseudoAttacks[QUEEN][s1] |= PseudoAttacks[ ROOK][s1] = attacks_bb< ROOK>(s1, 0);
for (Piece pc = W_BISHOP; pc <= W_ROOK; ++pc)
for (PieceType pt : { BISHOP, ROOK })
for (Square s2 = SQ_A1; s2 <= SQ_H8; ++s2)
{
if (!(PseudoAttacks[pc][s1] & s2))
if (!(PseudoAttacks[pt][s1] & s2))
continue;
LineBB[s1][s2] = (attacks_bb(pc, s1, 0) & attacks_bb(pc, s2, 0)) | s1 | s2;
BetweenBB[s1][s2] = attacks_bb(pc, s1, SquareBB[s2]) & attacks_bb(pc, s2, SquareBB[s1]);
LineBB[s1][s2] = (attacks_bb(pt, s1, 0) & attacks_bb(pt, s2, 0)) | s1 | s2;
BetweenBB[s1][s2] = attacks_bb(pt, s1, SquareBB[s2]) & attacks_bb(pt, s2, SquareBB[s1]);
}
}
}
@@ -255,17 +249,14 @@ namespace {
// chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
// use the so called "fancy" approach.
void init_magics(Bitboard table[], Bitboard* attacks[], Bitboard magics[],
Bitboard masks[], unsigned shifts[], Square deltas[], Fn index) {
void init_magics(Bitboard table[], Magic magics[], Square deltas[]) {
// Optimal PRNG seeds to pick the correct magics in the shortest time
int seeds[][RANK_NB] = { { 8977, 44560, 54343, 38998, 5731, 95205, 104912, 17020 },
{ 728, 10316, 55013, 32803, 12281, 15100, 16645, 255 } };
Bitboard occupancy[4096], reference[4096], edges, b;
int age[4096] = {0}, current = 0, i, size;
// attacks[s] is a pointer to the beginning of the attacks table for square 's'
attacks[SQ_A1] = table;
int epoch[4096] = {}, cnt = 0, size = 0;
for (Square s = SQ_A1; s <= SQ_H8; ++s)
{
@@ -277,8 +268,13 @@ namespace {
// all the attacks for each possible subset of the mask and so is 2 power
// the number of 1s of the mask. Hence we deduce the size of the shift to
// apply to the 64 or 32 bits word to get the index.
masks[s] = sliding_attack(deltas, s, 0) & ~edges;
shifts[s] = (Is64Bit ? 64 : 32) - popcount(masks[s]);
Magic& m = magics[s];
m.mask = sliding_attack(deltas, s, 0) & ~edges;
m.shift = (Is64Bit ? 64 : 32) - popcount(m.mask);
// Set the offset for the attacks table of the square. We have individual
// table sizes for each square with "Fancy Magic Bitboards".
m.attacks = s == SQ_A1 ? table : magics[s - 1].attacks + size;
// Use Carry-Rippler trick to enumerate all subsets of masks[s] and
// store the corresponding sliding attack bitboard in reference[].
@@ -288,17 +284,12 @@ namespace {
reference[size] = sliding_attack(deltas, s, b);
if (HasPext)
attacks[s][pext(b, masks[s])] = reference[size];
m.attacks[pext(b, m.mask)] = reference[size];
size++;
b = (b - masks[s]) & masks[s];
b = (b - m.mask) & m.mask;
} while (b);
// Set the offset for the table of the next square. We have individual
// table sizes for each square with "Fancy Magic Bitboards".
if (s < SQ_H8)
attacks[s + 1] = attacks[s] + size;
if (HasPext)
continue;
@@ -306,28 +297,30 @@ namespace {
// Find a magic for square 's' picking up an (almost) random number
// until we find the one that passes the verification test.
do {
do
magics[s] = rng.sparse_rand<Bitboard>();
while (popcount((magics[s] * masks[s]) >> 56) < 6);
for (int i = 0; i < size; )
{
for (m.magic = 0; popcount((m.magic * m.mask) >> 56) < 6; )
m.magic = rng.sparse_rand<Bitboard>();
// A good magic must map every possible occupancy to an index that
// looks up the correct sliding attack in the attacks[s] database.
// Note that we build up the database for square 's' as a side
// effect of verifying the magic.
for (++current, i = 0; i < size; ++i)
// effect of verifying the magic. Keep track of the attempt count
// and save it in epoch[], little speed-up trick to avoid resetting
// m.attacks[] after every failed attempt.
for (++cnt, i = 0; i < size; ++i)
{
unsigned idx = index(s, occupancy[i]);
unsigned idx = m.index(occupancy[i]);
if (age[idx] < current)
if (epoch[idx] < cnt)
{
age[idx] = current;
attacks[s][idx] = reference[i];
epoch[idx] = cnt;
m.attacks[idx] = reference[i];
}
else if (attacks[s][idx] != reference[i])
else if (m.attacks[idx] != reference[i])
break;
}
} while (i < size);
}
}
}
}