mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-17 11:12:17 +01:00
DroidFish: Updated stockfish engine to version 3.
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@@ -19,6 +19,7 @@
|
||||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
#include <iomanip>
|
||||
#include <iostream>
|
||||
#include <sstream>
|
||||
#include <algorithm>
|
||||
@@ -40,16 +41,16 @@ static const string PieceToChar(" PNBRQK pnbrqk");
|
||||
|
||||
CACHE_LINE_ALIGNMENT
|
||||
|
||||
Score pieceSquareTable[16][64]; // [piece][square]
|
||||
Value PieceValue[2][18] = { // [Mg / Eg][piece / pieceType]
|
||||
Score pieceSquareTable[PIECE_NB][SQUARE_NB];
|
||||
Value PieceValue[PHASE_NB][PIECE_NB] = {
|
||||
{ VALUE_ZERO, PawnValueMg, KnightValueMg, BishopValueMg, RookValueMg, QueenValueMg },
|
||||
{ VALUE_ZERO, PawnValueEg, KnightValueEg, BishopValueEg, RookValueEg, QueenValueEg } };
|
||||
|
||||
namespace Zobrist {
|
||||
|
||||
Key psq[2][8][64]; // [color][pieceType][square / piece count]
|
||||
Key enpassant[8]; // [file]
|
||||
Key castle[16]; // [castleRight]
|
||||
Key psq[COLOR_NB][PIECE_TYPE_NB][SQUARE_NB];
|
||||
Key enpassant[FILE_NB];
|
||||
Key castle[CASTLE_RIGHT_NB];
|
||||
Key side;
|
||||
Key exclusion;
|
||||
|
||||
@@ -86,10 +87,10 @@ void init() {
|
||||
|
||||
for (PieceType pt = PAWN; pt <= KING; pt++)
|
||||
{
|
||||
PieceValue[Mg][make_piece(BLACK, pt)] = PieceValue[Mg][pt];
|
||||
PieceValue[Eg][make_piece(BLACK, pt)] = PieceValue[Eg][pt];
|
||||
PieceValue[MG][make_piece(BLACK, pt)] = PieceValue[MG][pt];
|
||||
PieceValue[EG][make_piece(BLACK, pt)] = PieceValue[EG][pt];
|
||||
|
||||
Score v = make_score(PieceValue[Mg][pt], PieceValue[Eg][pt]);
|
||||
Score v = make_score(PieceValue[MG][pt], PieceValue[EG][pt]);
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
||||
{
|
||||
@@ -172,11 +173,11 @@ Position& Position::operator=(const Position& pos) {
|
||||
}
|
||||
|
||||
|
||||
/// Position::from_fen() initializes the position object with the given FEN
|
||||
/// string. This function is not very robust - make sure that input FENs are
|
||||
/// correct (this is assumed to be the responsibility of the GUI).
|
||||
/// Position::set() initializes the position object with the given FEN string.
|
||||
/// This function is not very robust - make sure that input FENs are correct,
|
||||
/// this is assumed to be the responsibility of the GUI.
|
||||
|
||||
void Position::from_fen(const string& fenStr, bool isChess960, Thread* th) {
|
||||
void Position::set(const string& fenStr, bool isChess960, Thread* th) {
|
||||
/*
|
||||
A FEN string defines a particular position using only the ASCII character set.
|
||||
|
||||
@@ -214,13 +215,13 @@ void Position::from_fen(const string& fenStr, bool isChess960, Thread* th) {
|
||||
char col, row, token;
|
||||
size_t p;
|
||||
Square sq = SQ_A8;
|
||||
std::istringstream fen(fenStr);
|
||||
std::istringstream ss(fenStr);
|
||||
|
||||
clear();
|
||||
fen >> std::noskipws;
|
||||
ss >> std::noskipws;
|
||||
|
||||
// 1. Piece placement
|
||||
while ((fen >> token) && !isspace(token))
|
||||
while ((ss >> token) && !isspace(token))
|
||||
{
|
||||
if (isdigit(token))
|
||||
sq += Square(token - '0'); // Advance the given number of files
|
||||
@@ -236,16 +237,16 @@ void Position::from_fen(const string& fenStr, bool isChess960, Thread* th) {
|
||||
}
|
||||
|
||||
// 2. Active color
|
||||
fen >> token;
|
||||
ss >> token;
|
||||
sideToMove = (token == 'w' ? WHITE : BLACK);
|
||||
fen >> token;
|
||||
ss >> token;
|
||||
|
||||
// 3. Castling availability. Compatible with 3 standards: Normal FEN standard,
|
||||
// Shredder-FEN that uses the letters of the columns on which the rooks began
|
||||
// the game instead of KQkq and also X-FEN standard that, in case of Chess960,
|
||||
// if an inner rook is associated with the castling right, the castling tag is
|
||||
// replaced by the file letter of the involved rook, as for the Shredder-FEN.
|
||||
while ((fen >> token) && !isspace(token))
|
||||
while ((ss >> token) && !isspace(token))
|
||||
{
|
||||
Square rsq;
|
||||
Color c = islower(token) ? BLACK : WHITE;
|
||||
@@ -268,8 +269,8 @@ void Position::from_fen(const string& fenStr, bool isChess960, Thread* th) {
|
||||
}
|
||||
|
||||
// 4. En passant square. Ignore if no pawn capture is possible
|
||||
if ( ((fen >> col) && (col >= 'a' && col <= 'h'))
|
||||
&& ((fen >> row) && (row == '3' || row == '6')))
|
||||
if ( ((ss >> col) && (col >= 'a' && col <= 'h'))
|
||||
&& ((ss >> row) && (row == '3' || row == '6')))
|
||||
{
|
||||
st->epSquare = File(col - 'a') | Rank(row - '1');
|
||||
|
||||
@@ -278,11 +279,11 @@ void Position::from_fen(const string& fenStr, bool isChess960, Thread* th) {
|
||||
}
|
||||
|
||||
// 5-6. Halfmove clock and fullmove number
|
||||
fen >> std::skipws >> st->rule50 >> startPosPly;
|
||||
ss >> std::skipws >> st->rule50 >> gamePly;
|
||||
|
||||
// Convert from fullmove starting from 1 to ply starting from 0,
|
||||
// handle also common incorrect FEN with fullmove = 0.
|
||||
startPosPly = std::max(2 * (startPosPly - 1), 0) + int(sideToMove == BLACK);
|
||||
gamePly = std::max(2 * (gamePly - 1), 0) + int(sideToMove == BLACK);
|
||||
|
||||
st->key = compute_key();
|
||||
st->pawnKey = compute_pawn_key();
|
||||
@@ -325,71 +326,64 @@ void Position::set_castle_right(Color c, Square rfrom) {
|
||||
}
|
||||
|
||||
|
||||
/// Position::to_fen() returns a FEN representation of the position. In case
|
||||
/// Position::fen() returns a FEN representation of the position. In case
|
||||
/// of Chess960 the Shredder-FEN notation is used. Mainly a debugging function.
|
||||
|
||||
const string Position::to_fen() const {
|
||||
const string Position::fen() const {
|
||||
|
||||
std::ostringstream fen;
|
||||
Square sq;
|
||||
int emptyCnt;
|
||||
std::ostringstream ss;
|
||||
|
||||
for (Rank rank = RANK_8; rank >= RANK_1; rank--)
|
||||
{
|
||||
emptyCnt = 0;
|
||||
|
||||
for (File file = FILE_A; file <= FILE_H; file++)
|
||||
{
|
||||
sq = file | rank;
|
||||
Square sq = file | rank;
|
||||
|
||||
if (is_empty(sq))
|
||||
emptyCnt++;
|
||||
else
|
||||
{
|
||||
if (emptyCnt > 0)
|
||||
{
|
||||
fen << emptyCnt;
|
||||
emptyCnt = 0;
|
||||
}
|
||||
fen << PieceToChar[piece_on(sq)];
|
||||
int emptyCnt = 1;
|
||||
|
||||
for ( ; file < FILE_H && is_empty(sq++); file++)
|
||||
emptyCnt++;
|
||||
|
||||
ss << emptyCnt;
|
||||
}
|
||||
else
|
||||
ss << PieceToChar[piece_on(sq)];
|
||||
}
|
||||
|
||||
if (emptyCnt > 0)
|
||||
fen << emptyCnt;
|
||||
|
||||
if (rank > RANK_1)
|
||||
fen << '/';
|
||||
ss << '/';
|
||||
}
|
||||
|
||||
fen << (sideToMove == WHITE ? " w " : " b ");
|
||||
ss << (sideToMove == WHITE ? " w " : " b ");
|
||||
|
||||
if (can_castle(WHITE_OO))
|
||||
fen << (chess960 ? char(toupper(file_to_char(file_of(castle_rook_square(WHITE, KING_SIDE))))) : 'K');
|
||||
ss << (chess960 ? file_to_char(file_of(castle_rook_square(WHITE, KING_SIDE)), false) : 'K');
|
||||
|
||||
if (can_castle(WHITE_OOO))
|
||||
fen << (chess960 ? char(toupper(file_to_char(file_of(castle_rook_square(WHITE, QUEEN_SIDE))))) : 'Q');
|
||||
ss << (chess960 ? file_to_char(file_of(castle_rook_square(WHITE, QUEEN_SIDE)), false) : 'Q');
|
||||
|
||||
if (can_castle(BLACK_OO))
|
||||
fen << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, KING_SIDE))) : 'k');
|
||||
ss << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, KING_SIDE)), true) : 'k');
|
||||
|
||||
if (can_castle(BLACK_OOO))
|
||||
fen << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, QUEEN_SIDE))) : 'q');
|
||||
ss << (chess960 ? file_to_char(file_of(castle_rook_square(BLACK, QUEEN_SIDE)), true) : 'q');
|
||||
|
||||
if (st->castleRights == CASTLES_NONE)
|
||||
fen << '-';
|
||||
ss << '-';
|
||||
|
||||
fen << (ep_square() == SQ_NONE ? " - " : " " + square_to_string(ep_square()) + " ")
|
||||
<< st->rule50 << " " << 1 + (startPosPly - int(sideToMove == BLACK)) / 2;
|
||||
ss << (ep_square() == SQ_NONE ? " - " : " " + square_to_string(ep_square()) + " ")
|
||||
<< st->rule50 << " " << 1 + (gamePly - int(sideToMove == BLACK)) / 2;
|
||||
|
||||
return fen.str();
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
|
||||
/// Position::print() prints an ASCII representation of the position to
|
||||
/// the standard output. If a move is given then also the san is printed.
|
||||
/// Position::pretty() returns an ASCII representation of the position to be
|
||||
/// printed to the standard output together with the move's san notation.
|
||||
|
||||
void Position::print(Move move) const {
|
||||
const string Position::pretty(Move move) const {
|
||||
|
||||
const string dottedLine = "\n+---+---+---+---+---+---+---+---+";
|
||||
const string twoRows = dottedLine + "\n| | . | | . | | . | | . |"
|
||||
@@ -397,19 +391,27 @@ void Position::print(Move move) const {
|
||||
|
||||
string brd = twoRows + twoRows + twoRows + twoRows + dottedLine;
|
||||
|
||||
sync_cout;
|
||||
std::ostringstream ss;
|
||||
|
||||
if (move)
|
||||
{
|
||||
Position p(*this);
|
||||
cout << "\nMove is: " << (sideToMove == BLACK ? ".." : "") << move_to_san(p, move);
|
||||
}
|
||||
ss << "\nMove: " << (sideToMove == BLACK ? ".." : "")
|
||||
<< move_to_san(*const_cast<Position*>(this), move);
|
||||
|
||||
for (Square sq = SQ_A1; sq <= SQ_H8; sq++)
|
||||
if (piece_on(sq) != NO_PIECE)
|
||||
brd[513 - 68*rank_of(sq) + 4*file_of(sq)] = PieceToChar[piece_on(sq)];
|
||||
|
||||
cout << brd << "\nFen is: " << to_fen() << "\nKey is: " << st->key << sync_endl;
|
||||
ss << brd << "\nFen: " << fen() << "\nKey: " << std::hex << std::uppercase
|
||||
<< std::setfill('0') << std::setw(16) << st->key << "\nCheckers: ";
|
||||
|
||||
for (Bitboard b = checkers(); b; )
|
||||
ss << square_to_string(pop_lsb(&b)) << " ";
|
||||
|
||||
ss << "\nLegal moves: ";
|
||||
for (MoveList<LEGAL> ml(*this); !ml.end(); ++ml)
|
||||
ss << move_to_san(*const_cast<Position*>(this), ml.move()) << " ";
|
||||
|
||||
return ss.str();
|
||||
}
|
||||
|
||||
|
||||
@@ -475,37 +477,6 @@ Bitboard Position::attacks_from(Piece p, Square s, Bitboard occ) {
|
||||
}
|
||||
|
||||
|
||||
/// Position::move_attacks_square() tests whether a move from the current
|
||||
/// position attacks a given square.
|
||||
|
||||
bool Position::move_attacks_square(Move m, Square s) const {
|
||||
|
||||
assert(is_ok(m));
|
||||
assert(is_ok(s));
|
||||
|
||||
Bitboard occ, xray;
|
||||
Square from = from_sq(m);
|
||||
Square to = to_sq(m);
|
||||
Piece piece = piece_moved(m);
|
||||
|
||||
assert(!is_empty(from));
|
||||
|
||||
// Update occupancy as if the piece is moving
|
||||
occ = pieces() ^ from ^ to;
|
||||
|
||||
// The piece moved in 'to' attacks the square 's' ?
|
||||
if (attacks_from(piece, to, occ) & s)
|
||||
return true;
|
||||
|
||||
// Scan for possible X-ray attackers behind the moved piece
|
||||
xray = (attacks_bb< ROOK>(s, occ) & pieces(color_of(piece), QUEEN, ROOK))
|
||||
| (attacks_bb<BISHOP>(s, occ) & pieces(color_of(piece), QUEEN, BISHOP));
|
||||
|
||||
// Verify attackers are triggered by our move and not already existing
|
||||
return xray && (xray ^ (xray & attacks_from<QUEEN>(s)));
|
||||
}
|
||||
|
||||
|
||||
/// Position::pl_move_is_legal() tests whether a pseudo-legal move is legal
|
||||
|
||||
bool Position::pl_move_is_legal(Move m, Bitboard pinned) const {
|
||||
@@ -553,20 +524,6 @@ bool Position::pl_move_is_legal(Move m, Bitboard pinned) const {
|
||||
}
|
||||
|
||||
|
||||
/// Position::move_is_legal() takes a random move and tests whether the move
|
||||
/// is legal. This version is not very fast and should be used only in non
|
||||
/// time-critical paths.
|
||||
|
||||
bool Position::move_is_legal(const Move m) const {
|
||||
|
||||
for (MoveList<LEGAL> ml(*this); !ml.end(); ++ml)
|
||||
if (ml.move() == m)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
/// Position::is_pseudo_legal() takes a random move and tests whether the move
|
||||
/// is pseudo legal. It is used to validate moves from TT that can be corrupted
|
||||
/// due to SMP concurrent access or hash position key aliasing.
|
||||
@@ -574,14 +531,13 @@ bool Position::move_is_legal(const Move m) const {
|
||||
bool Position::is_pseudo_legal(const Move m) const {
|
||||
|
||||
Color us = sideToMove;
|
||||
Color them = ~sideToMove;
|
||||
Square from = from_sq(m);
|
||||
Square to = to_sq(m);
|
||||
Piece pc = piece_moved(m);
|
||||
|
||||
// Use a slower but simpler function for uncommon cases
|
||||
if (type_of(m) != NORMAL)
|
||||
return move_is_legal(m);
|
||||
return MoveList<LEGAL>(*this).contains(m);
|
||||
|
||||
// Is not a promotion, so promotion piece must be empty
|
||||
if (promotion_type(m) - 2 != NO_PIECE_TYPE)
|
||||
@@ -593,7 +549,7 @@ bool Position::is_pseudo_legal(const Move m) const {
|
||||
return false;
|
||||
|
||||
// The destination square cannot be occupied by a friendly piece
|
||||
if (color_of(piece_on(to)) == us)
|
||||
if (piece_on(to) != NO_PIECE && color_of(piece_on(to)) == us)
|
||||
return false;
|
||||
|
||||
// Handle the special case of a pawn move
|
||||
@@ -619,7 +575,7 @@ bool Position::is_pseudo_legal(const Move m) const {
|
||||
case DELTA_SE:
|
||||
// Capture. The destination square must be occupied by an enemy
|
||||
// piece (en passant captures was handled earlier).
|
||||
if (color_of(piece_on(to)) != them)
|
||||
if (piece_on(to) == NO_PIECE || color_of(piece_on(to)) != ~us)
|
||||
return false;
|
||||
|
||||
// From and to files must be one file apart, avoids a7h5
|
||||
@@ -664,18 +620,16 @@ bool Position::is_pseudo_legal(const Move m) const {
|
||||
// Evasions generator already takes care to avoid some kind of illegal moves
|
||||
// and pl_move_is_legal() relies on this. So we have to take care that the
|
||||
// same kind of moves are filtered out here.
|
||||
if (in_check())
|
||||
if (checkers())
|
||||
{
|
||||
if (type_of(pc) != KING)
|
||||
{
|
||||
Bitboard b = checkers();
|
||||
Square checksq = pop_lsb(&b);
|
||||
|
||||
if (b) // double check ? In this case a king move is required
|
||||
// Double check? In this case a king move is required
|
||||
if (more_than_one(checkers()))
|
||||
return false;
|
||||
|
||||
// Our move must be a blocking evasion or a capture of the checking piece
|
||||
if (!((between_bb(checksq, king_square(us)) | checkers()) & to))
|
||||
if (!((between_bb(lsb(checkers()), king_square(us)) | checkers()) & to))
|
||||
return false;
|
||||
}
|
||||
// In case of king moves under check we have to remove king so to catch
|
||||
@@ -720,15 +674,16 @@ bool Position::move_gives_check(Move m, const CheckInfo& ci) const {
|
||||
Color us = sideToMove;
|
||||
Square ksq = king_square(~us);
|
||||
|
||||
// Promotion with check ?
|
||||
if (type_of(m) == PROMOTION)
|
||||
switch (type_of(m))
|
||||
{
|
||||
case PROMOTION:
|
||||
return attacks_from(Piece(promotion_type(m)), to, pieces() ^ from) & ksq;
|
||||
|
||||
// En passant capture with check ? We have already handled the case
|
||||
// of direct checks and ordinary discovered check, the only case we
|
||||
// need to handle is the unusual case of a discovered check through
|
||||
// the captured pawn.
|
||||
if (type_of(m) == ENPASSANT)
|
||||
case ENPASSANT:
|
||||
{
|
||||
Square capsq = file_of(to) | rank_of(from);
|
||||
Bitboard b = (pieces() ^ from ^ capsq) | to;
|
||||
@@ -736,9 +691,7 @@ bool Position::move_gives_check(Move m, const CheckInfo& ci) const {
|
||||
return (attacks_bb< ROOK>(ksq, b) & pieces(us, QUEEN, ROOK))
|
||||
| (attacks_bb<BISHOP>(ksq, b) & pieces(us, QUEEN, BISHOP));
|
||||
}
|
||||
|
||||
// Castling with check ?
|
||||
if (type_of(m) == CASTLE)
|
||||
case CASTLE:
|
||||
{
|
||||
Square kfrom = from;
|
||||
Square rfrom = to; // 'King captures the rook' notation
|
||||
@@ -748,8 +701,10 @@ bool Position::move_gives_check(Move m, const CheckInfo& ci) const {
|
||||
|
||||
return attacks_bb<ROOK>(rto, b) & ksq;
|
||||
}
|
||||
|
||||
return false;
|
||||
default:
|
||||
assert(false);
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -772,9 +727,9 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
|
||||
Key k = st->key;
|
||||
|
||||
// Copy some fields of old state to our new StateInfo object except the ones
|
||||
// which are recalculated from scratch anyway, then switch our state pointer
|
||||
// to point to the new, ready to be updated, state.
|
||||
memcpy(&newSt, st, sizeof(ReducedStateInfo));
|
||||
// which are going to be recalculated from scratch anyway, then switch our state
|
||||
// pointer to point to the new, ready to be updated, state.
|
||||
memcpy(&newSt, st, StateCopySize64 * sizeof(uint64_t));
|
||||
|
||||
newSt.previous = st;
|
||||
st = &newSt;
|
||||
@@ -782,18 +737,12 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
|
||||
// Update side to move
|
||||
k ^= Zobrist::side;
|
||||
|
||||
// Increment the 50 moves rule draw counter. Resetting it to zero in the
|
||||
// case of a capture or a pawn move is taken care of later.
|
||||
// Increment ply counters.In particular rule50 will be later reset it to zero
|
||||
// in case of a capture or a pawn move.
|
||||
gamePly++;
|
||||
st->rule50++;
|
||||
st->pliesFromNull++;
|
||||
|
||||
if (type_of(m) == CASTLE)
|
||||
{
|
||||
st->key = k;
|
||||
do_castle_move<true>(m);
|
||||
return;
|
||||
}
|
||||
|
||||
Color us = sideToMove;
|
||||
Color them = ~us;
|
||||
Square from = from_sq(m);
|
||||
@@ -803,9 +752,25 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
|
||||
PieceType capture = type_of(m) == ENPASSANT ? PAWN : type_of(piece_on(to));
|
||||
|
||||
assert(color_of(piece) == us);
|
||||
assert(color_of(piece_on(to)) != us);
|
||||
assert(piece_on(to) == NO_PIECE || color_of(piece_on(to)) == them || type_of(m) == CASTLE);
|
||||
assert(capture != KING);
|
||||
|
||||
if (type_of(m) == CASTLE)
|
||||
{
|
||||
assert(piece == make_piece(us, KING));
|
||||
|
||||
bool kingSide = to > from;
|
||||
Square rfrom = to; // Castle is encoded as "king captures friendly rook"
|
||||
Square rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
|
||||
to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
|
||||
capture = NO_PIECE_TYPE;
|
||||
|
||||
do_castle(from, to, rfrom, rto);
|
||||
|
||||
st->psqScore += psq_delta(make_piece(us, ROOK), rfrom, rto);
|
||||
k ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto];
|
||||
}
|
||||
|
||||
if (capture)
|
||||
{
|
||||
Square capsq = to;
|
||||
@@ -830,7 +795,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
|
||||
st->pawnKey ^= Zobrist::psq[them][PAWN][capsq];
|
||||
}
|
||||
else
|
||||
st->npMaterial[them] -= PieceValue[Mg][capture];
|
||||
st->npMaterial[them] -= PieceValue[MG][capture];
|
||||
|
||||
// Remove the captured piece
|
||||
byTypeBB[ALL_PIECES] ^= capsq;
|
||||
@@ -840,7 +805,7 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
|
||||
// Update piece list, move the last piece at index[capsq] position and
|
||||
// shrink the list.
|
||||
//
|
||||
// WARNING: This is a not revresible operation. When we will reinsert the
|
||||
// WARNING: This is a not reversible operation. When we will reinsert the
|
||||
// captured piece in undo_move() we will put it at the end of the list and
|
||||
// not in its original place, it means index[] and pieceList[] are not
|
||||
// guaranteed to be invariant to a do_move() + undo_move() sequence.
|
||||
@@ -849,9 +814,10 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
|
||||
pieceList[them][capture][index[lastSquare]] = lastSquare;
|
||||
pieceList[them][capture][pieceCount[them][capture]] = SQ_NONE;
|
||||
|
||||
// Update hash keys
|
||||
// Update material hash key and prefetch access to materialTable
|
||||
k ^= Zobrist::psq[them][capture][capsq];
|
||||
st->materialKey ^= Zobrist::psq[them][capture][pieceCount[them][capture]];
|
||||
prefetch((char*)thisThread->materialTable[st->materialKey]);
|
||||
|
||||
// Update incremental scores
|
||||
st->psqScore -= pieceSquareTable[make_piece(them, capture)][capsq];
|
||||
@@ -878,22 +844,25 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
|
||||
st->castleRights &= ~cr;
|
||||
}
|
||||
|
||||
// Prefetch TT access as soon as we know key is updated
|
||||
// Prefetch TT access as soon as we know the new hash key
|
||||
prefetch((char*)TT.first_entry(k));
|
||||
|
||||
// Move the piece
|
||||
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
|
||||
byTypeBB[ALL_PIECES] ^= from_to_bb;
|
||||
byTypeBB[pt] ^= from_to_bb;
|
||||
byColorBB[us] ^= from_to_bb;
|
||||
// Move the piece. The tricky Chess960 castle is handled earlier
|
||||
if (type_of(m) != CASTLE)
|
||||
{
|
||||
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
|
||||
byTypeBB[ALL_PIECES] ^= from_to_bb;
|
||||
byTypeBB[pt] ^= from_to_bb;
|
||||
byColorBB[us] ^= from_to_bb;
|
||||
|
||||
board[to] = board[from];
|
||||
board[from] = NO_PIECE;
|
||||
board[from] = NO_PIECE;
|
||||
board[to] = piece;
|
||||
|
||||
// Update piece lists, index[from] is not updated and becomes stale. This
|
||||
// works as long as index[] is accessed just by known occupied squares.
|
||||
index[to] = index[from];
|
||||
pieceList[us][pt][index[to]] = to;
|
||||
// Update piece lists, index[from] is not updated and becomes stale. This
|
||||
// works as long as index[] is accessed just by known occupied squares.
|
||||
index[to] = index[from];
|
||||
pieceList[us][pt][index[to]] = to;
|
||||
}
|
||||
|
||||
// If the moving piece is a pawn do some special extra work
|
||||
if (pt == PAWN)
|
||||
@@ -938,20 +907,17 @@ void Position::do_move(Move m, StateInfo& newSt, const CheckInfo& ci, bool moveI
|
||||
- pieceSquareTable[make_piece(us, PAWN)][to];
|
||||
|
||||
// Update material
|
||||
st->npMaterial[us] += PieceValue[Mg][promotion];
|
||||
st->npMaterial[us] += PieceValue[MG][promotion];
|
||||
}
|
||||
|
||||
// Update pawn hash key
|
||||
// Update pawn hash key and prefetch access to pawnsTable
|
||||
st->pawnKey ^= Zobrist::psq[us][PAWN][from] ^ Zobrist::psq[us][PAWN][to];
|
||||
prefetch((char*)thisThread->pawnsTable[st->pawnKey]);
|
||||
|
||||
// Reset rule 50 draw counter
|
||||
st->rule50 = 0;
|
||||
}
|
||||
|
||||
// Prefetch pawn and material hash tables
|
||||
prefetch((char*)thisThread->pawnTable.entries[st->pawnKey]);
|
||||
prefetch((char*)thisThread->materialTable.entries[st->materialKey]);
|
||||
|
||||
// Update incremental scores
|
||||
st->psqScore += psq_delta(piece, from, to);
|
||||
|
||||
@@ -1001,22 +967,14 @@ void Position::undo_move(Move m) {
|
||||
|
||||
sideToMove = ~sideToMove;
|
||||
|
||||
if (type_of(m) == CASTLE)
|
||||
{
|
||||
do_castle_move<false>(m);
|
||||
return;
|
||||
}
|
||||
|
||||
Color us = sideToMove;
|
||||
Color them = ~us;
|
||||
Square from = from_sq(m);
|
||||
Square to = to_sq(m);
|
||||
Piece piece = piece_on(to);
|
||||
PieceType pt = type_of(piece);
|
||||
PieceType pt = type_of(piece_on(to));
|
||||
PieceType capture = st->capturedType;
|
||||
|
||||
assert(is_empty(from));
|
||||
assert(color_of(piece) == us);
|
||||
assert(is_empty(from) || type_of(m) == CASTLE);
|
||||
assert(capture != KING);
|
||||
|
||||
if (type_of(m) == PROMOTION)
|
||||
@@ -1044,19 +1002,32 @@ void Position::undo_move(Move m) {
|
||||
pt = PAWN;
|
||||
}
|
||||
|
||||
// Put the piece back at the source square
|
||||
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
|
||||
byTypeBB[ALL_PIECES] ^= from_to_bb;
|
||||
byTypeBB[pt] ^= from_to_bb;
|
||||
byColorBB[us] ^= from_to_bb;
|
||||
if (type_of(m) == CASTLE)
|
||||
{
|
||||
bool kingSide = to > from;
|
||||
Square rfrom = to; // Castle is encoded as "king captures friendly rook"
|
||||
Square rto = relative_square(us, kingSide ? SQ_F1 : SQ_D1);
|
||||
to = relative_square(us, kingSide ? SQ_G1 : SQ_C1);
|
||||
capture = NO_PIECE_TYPE;
|
||||
pt = KING;
|
||||
do_castle(to, from, rto, rfrom);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Put the piece back at the source square
|
||||
Bitboard from_to_bb = SquareBB[from] ^ SquareBB[to];
|
||||
byTypeBB[ALL_PIECES] ^= from_to_bb;
|
||||
byTypeBB[pt] ^= from_to_bb;
|
||||
byColorBB[us] ^= from_to_bb;
|
||||
|
||||
board[from] = board[to];
|
||||
board[to] = NO_PIECE;
|
||||
board[to] = NO_PIECE;
|
||||
board[from] = make_piece(us, pt);
|
||||
|
||||
// Update piece lists, index[to] is not updated and becomes stale. This
|
||||
// works as long as index[] is accessed just by known occupied squares.
|
||||
index[from] = index[to];
|
||||
pieceList[us][pt][index[from]] = from;
|
||||
// Update piece lists, index[to] is not updated and becomes stale. This
|
||||
// works as long as index[] is accessed just by known occupied squares.
|
||||
index[from] = index[to];
|
||||
pieceList[us][pt][index[from]] = from;
|
||||
}
|
||||
|
||||
if (capture)
|
||||
{
|
||||
@@ -1086,49 +1057,18 @@ void Position::undo_move(Move m) {
|
||||
|
||||
// Finally point our state pointer back to the previous state
|
||||
st = st->previous;
|
||||
gamePly--;
|
||||
|
||||
assert(pos_is_ok());
|
||||
}
|
||||
|
||||
|
||||
/// Position::do_castle_move() is a private method used to do/undo a castling
|
||||
/// move. Note that castling moves are encoded as "king captures friendly rook"
|
||||
/// moves, for instance white short castling in a non-Chess960 game is encoded
|
||||
/// as e1h1.
|
||||
template<bool Do>
|
||||
void Position::do_castle_move(Move m) {
|
||||
/// Position::do_castle() is a helper used to do/undo a castling move. This
|
||||
/// is a bit tricky, especially in Chess960.
|
||||
|
||||
assert(is_ok(m));
|
||||
assert(type_of(m) == CASTLE);
|
||||
|
||||
Square kto, kfrom, rfrom, rto, kAfter, rAfter;
|
||||
void Position::do_castle(Square kfrom, Square kto, Square rfrom, Square rto) {
|
||||
|
||||
Color us = sideToMove;
|
||||
Square kBefore = from_sq(m);
|
||||
Square rBefore = to_sq(m);
|
||||
|
||||
// Find after-castle squares for king and rook
|
||||
if (rBefore > kBefore) // O-O
|
||||
{
|
||||
kAfter = relative_square(us, SQ_G1);
|
||||
rAfter = relative_square(us, SQ_F1);
|
||||
}
|
||||
else // O-O-O
|
||||
{
|
||||
kAfter = relative_square(us, SQ_C1);
|
||||
rAfter = relative_square(us, SQ_D1);
|
||||
}
|
||||
|
||||
kfrom = Do ? kBefore : kAfter;
|
||||
rfrom = Do ? rBefore : rAfter;
|
||||
|
||||
kto = Do ? kAfter : kBefore;
|
||||
rto = Do ? rAfter : rBefore;
|
||||
|
||||
assert(piece_on(kfrom) == make_piece(us, KING));
|
||||
assert(piece_on(rfrom) == make_piece(us, ROOK));
|
||||
|
||||
// Move the pieces, with some care; in chess960 could be kto == rfrom
|
||||
Bitboard k_from_to_bb = SquareBB[kfrom] ^ SquareBB[kto];
|
||||
Bitboard r_from_to_bb = SquareBB[rfrom] ^ SquareBB[rto];
|
||||
byTypeBB[KING] ^= k_from_to_bb;
|
||||
@@ -1136,105 +1076,63 @@ void Position::do_castle_move(Move m) {
|
||||
byTypeBB[ALL_PIECES] ^= k_from_to_bb ^ r_from_to_bb;
|
||||
byColorBB[us] ^= k_from_to_bb ^ r_from_to_bb;
|
||||
|
||||
// Update board
|
||||
Piece king = make_piece(us, KING);
|
||||
Piece rook = make_piece(us, ROOK);
|
||||
// Could be from == to, so first set NO_PIECE then KING and ROOK
|
||||
board[kfrom] = board[rfrom] = NO_PIECE;
|
||||
board[kto] = king;
|
||||
board[rto] = rook;
|
||||
board[kto] = make_piece(us, KING);
|
||||
board[rto] = make_piece(us, ROOK);
|
||||
|
||||
// Update piece lists
|
||||
pieceList[us][KING][index[kfrom]] = kto;
|
||||
pieceList[us][ROOK][index[rfrom]] = rto;
|
||||
int tmp = index[rfrom]; // In Chess960 could be kto == rfrom
|
||||
index[kto] = index[kfrom];
|
||||
index[rto] = tmp;
|
||||
|
||||
if (Do)
|
||||
{
|
||||
// Reset capture field
|
||||
st->capturedType = NO_PIECE_TYPE;
|
||||
|
||||
// Update incremental scores
|
||||
st->psqScore += psq_delta(king, kfrom, kto);
|
||||
st->psqScore += psq_delta(rook, rfrom, rto);
|
||||
|
||||
// Update hash key
|
||||
st->key ^= Zobrist::psq[us][KING][kfrom] ^ Zobrist::psq[us][KING][kto];
|
||||
st->key ^= Zobrist::psq[us][ROOK][rfrom] ^ Zobrist::psq[us][ROOK][rto];
|
||||
|
||||
// Clear en passant square
|
||||
if (st->epSquare != SQ_NONE)
|
||||
{
|
||||
st->key ^= Zobrist::enpassant[file_of(st->epSquare)];
|
||||
st->epSquare = SQ_NONE;
|
||||
}
|
||||
|
||||
// Update castling rights
|
||||
st->key ^= Zobrist::castle[st->castleRights & castleRightsMask[kfrom]];
|
||||
st->castleRights &= ~castleRightsMask[kfrom];
|
||||
|
||||
// Update checkers BB
|
||||
st->checkersBB = attackers_to(king_square(~us)) & pieces(us);
|
||||
|
||||
sideToMove = ~sideToMove;
|
||||
}
|
||||
else
|
||||
// Undo: point our state pointer back to the previous state
|
||||
st = st->previous;
|
||||
|
||||
assert(pos_is_ok());
|
||||
// Could be kfrom == rto, so use a 'tmp' variable
|
||||
int tmp = index[kfrom];
|
||||
index[rto] = index[rfrom];
|
||||
index[kto] = tmp;
|
||||
pieceList[us][KING][index[kto]] = kto;
|
||||
pieceList[us][ROOK][index[rto]] = rto;
|
||||
}
|
||||
|
||||
|
||||
/// Position::do_null_move() is used to do/undo a "null move": It flips the side
|
||||
/// to move and updates the hash key without executing any move on the board.
|
||||
template<bool Do>
|
||||
void Position::do_null_move(StateInfo& backupSt) {
|
||||
/// Position::do(undo)_null_move() is used to do(undo) a "null move": It flips
|
||||
/// the side to move without executing any move on the board.
|
||||
|
||||
assert(!in_check());
|
||||
void Position::do_null_move(StateInfo& newSt) {
|
||||
|
||||
// Back up the information necessary to undo the null move to the supplied
|
||||
// StateInfo object. Note that differently from normal case here backupSt
|
||||
// is actually used as a backup storage not as the new state. This reduces
|
||||
// the number of fields to be copied.
|
||||
StateInfo* src = Do ? st : &backupSt;
|
||||
StateInfo* dst = Do ? &backupSt : st;
|
||||
assert(!checkers());
|
||||
|
||||
dst->key = src->key;
|
||||
dst->epSquare = src->epSquare;
|
||||
dst->psqScore = src->psqScore;
|
||||
dst->rule50 = src->rule50;
|
||||
dst->pliesFromNull = src->pliesFromNull;
|
||||
memcpy(&newSt, st, sizeof(StateInfo)); // Fully copy here
|
||||
|
||||
newSt.previous = st;
|
||||
st = &newSt;
|
||||
|
||||
if (st->epSquare != SQ_NONE)
|
||||
{
|
||||
st->key ^= Zobrist::enpassant[file_of(st->epSquare)];
|
||||
st->epSquare = SQ_NONE;
|
||||
}
|
||||
|
||||
st->key ^= Zobrist::side;
|
||||
prefetch((char*)TT.first_entry(st->key));
|
||||
|
||||
st->rule50++;
|
||||
st->pliesFromNull = 0;
|
||||
|
||||
sideToMove = ~sideToMove;
|
||||
|
||||
if (Do)
|
||||
{
|
||||
if (st->epSquare != SQ_NONE)
|
||||
st->key ^= Zobrist::enpassant[file_of(st->epSquare)];
|
||||
|
||||
st->key ^= Zobrist::side;
|
||||
prefetch((char*)TT.first_entry(st->key));
|
||||
|
||||
st->epSquare = SQ_NONE;
|
||||
st->rule50++;
|
||||
st->pliesFromNull = 0;
|
||||
}
|
||||
|
||||
assert(pos_is_ok());
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template void Position::do_null_move<false>(StateInfo& backupSt);
|
||||
template void Position::do_null_move<true>(StateInfo& backupSt);
|
||||
void Position::undo_null_move() {
|
||||
|
||||
assert(!checkers());
|
||||
|
||||
st = st->previous;
|
||||
sideToMove = ~sideToMove;
|
||||
}
|
||||
|
||||
|
||||
/// Position::see() is a static exchange evaluator: It tries to estimate the
|
||||
/// material gain or loss resulting from a move. There are three versions of
|
||||
/// this function: One which takes a destination square as input, one takes a
|
||||
/// move, and one which takes a 'from' and a 'to' square. The function does
|
||||
/// not yet understand promotions captures.
|
||||
/// material gain or loss resulting from a move. Parameter 'asymmThreshold' takes
|
||||
/// tempi into account. If the side who initiated the capturing sequence does the
|
||||
/// last capture, he loses a tempo and if the result is below 'asymmThreshold'
|
||||
/// the capturing sequence is considered bad.
|
||||
|
||||
int Position::see_sign(Move m) const {
|
||||
|
||||
@@ -1243,13 +1141,13 @@ int Position::see_sign(Move m) const {
|
||||
// Early return if SEE cannot be negative because captured piece value
|
||||
// is not less then capturing one. Note that king moves always return
|
||||
// here because king midgame value is set to 0.
|
||||
if (PieceValue[Mg][piece_on(to_sq(m))] >= PieceValue[Mg][piece_moved(m)])
|
||||
if (PieceValue[MG][piece_on(to_sq(m))] >= PieceValue[MG][piece_moved(m)])
|
||||
return 1;
|
||||
|
||||
return see(m);
|
||||
}
|
||||
|
||||
int Position::see(Move m) const {
|
||||
int Position::see(Move m, int asymmThreshold) const {
|
||||
|
||||
Square from, to;
|
||||
Bitboard occupied, attackers, stmAttackers;
|
||||
@@ -1290,7 +1188,7 @@ int Position::see(Move m) const {
|
||||
stm = ~color_of(piece_on(from));
|
||||
stmAttackers = attackers & pieces(stm);
|
||||
if (!stmAttackers)
|
||||
return PieceValue[Mg][captured];
|
||||
return PieceValue[MG][captured];
|
||||
|
||||
// The destination square is defended, which makes things rather more
|
||||
// difficult to compute. We proceed by building up a "swap list" containing
|
||||
@@ -1298,14 +1196,14 @@ int Position::see(Move m) const {
|
||||
// destination square, where the sides alternately capture, and always
|
||||
// capture with the least valuable piece. After each capture, we look for
|
||||
// new X-ray attacks from behind the capturing piece.
|
||||
swapList[0] = PieceValue[Mg][captured];
|
||||
swapList[0] = PieceValue[MG][captured];
|
||||
captured = type_of(piece_on(from));
|
||||
|
||||
do {
|
||||
assert(slIndex < 32);
|
||||
|
||||
// Add the new entry to the swap list
|
||||
swapList[slIndex] = -swapList[slIndex - 1] + PieceValue[Mg][captured];
|
||||
swapList[slIndex] = -swapList[slIndex - 1] + PieceValue[MG][captured];
|
||||
slIndex++;
|
||||
|
||||
// Locate and remove from 'occupied' the next least valuable attacker
|
||||
@@ -1326,6 +1224,15 @@ int Position::see(Move m) const {
|
||||
|
||||
} while (stmAttackers);
|
||||
|
||||
// If we are doing asymmetric SEE evaluation and the same side does the first
|
||||
// and the last capture, he loses a tempo and gain must be at least worth
|
||||
// 'asymmThreshold', otherwise we replace the score with a very low value,
|
||||
// before negamaxing.
|
||||
if (asymmThreshold)
|
||||
for (int i = 0; i < slIndex; i += 2)
|
||||
if (swapList[i] < asymmThreshold)
|
||||
swapList[i] = - QueenValueMg * 16;
|
||||
|
||||
// Having built the swap list, we negamax through it to find the best
|
||||
// achievable score from the point of view of the side to move.
|
||||
while (--slIndex)
|
||||
@@ -1347,9 +1254,6 @@ void Position::clear() {
|
||||
for (int i = 0; i < 8; i++)
|
||||
for (int j = 0; j < 16; j++)
|
||||
pieceList[0][i][j] = pieceList[1][i][j] = SQ_NONE;
|
||||
|
||||
for (Square sq = SQ_A1; sq <= SQ_H8; sq++)
|
||||
board[sq] = NO_PIECE;
|
||||
}
|
||||
|
||||
|
||||
@@ -1463,7 +1367,7 @@ Value Position::compute_non_pawn_material(Color c) const {
|
||||
Value value = VALUE_ZERO;
|
||||
|
||||
for (PieceType pt = KNIGHT; pt <= QUEEN; pt++)
|
||||
value += piece_count(c, pt) * PieceValue[Mg][pt];
|
||||
value += piece_count(c, pt) * PieceValue[MG][pt];
|
||||
|
||||
return value;
|
||||
}
|
||||
@@ -1472,7 +1376,6 @@ Value Position::compute_non_pawn_material(Color c) const {
|
||||
/// Position::is_draw() tests whether the position is drawn by material,
|
||||
/// repetition, or the 50 moves rule. It does not detect stalemates, this
|
||||
/// must be done by the search.
|
||||
template<bool SkipRepetition>
|
||||
bool Position::is_draw() const {
|
||||
|
||||
// Draw by material?
|
||||
@@ -1481,37 +1384,30 @@ bool Position::is_draw() const {
|
||||
return true;
|
||||
|
||||
// Draw by the 50 moves rule?
|
||||
if (st->rule50 > 99 && (!in_check() || MoveList<LEGAL>(*this).size()))
|
||||
if (st->rule50 > 99 && (!checkers() || MoveList<LEGAL>(*this).size()))
|
||||
return true;
|
||||
|
||||
// Draw by repetition?
|
||||
if (!SkipRepetition)
|
||||
int i = 4, e = std::min(st->rule50, st->pliesFromNull);
|
||||
|
||||
if (i <= e)
|
||||
{
|
||||
int i = 4, e = std::min(st->rule50, st->pliesFromNull);
|
||||
StateInfo* stp = st->previous->previous;
|
||||
|
||||
if (i <= e)
|
||||
{
|
||||
StateInfo* stp = st->previous->previous;
|
||||
do {
|
||||
stp = stp->previous->previous;
|
||||
|
||||
do {
|
||||
stp = stp->previous->previous;
|
||||
if (stp->key == st->key)
|
||||
return true;
|
||||
|
||||
if (stp->key == st->key)
|
||||
return true;
|
||||
i += 2;
|
||||
|
||||
i +=2;
|
||||
|
||||
} while (i <= e);
|
||||
}
|
||||
} while (i <= e);
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template bool Position::is_draw<false>() const;
|
||||
template bool Position::is_draw<true>() const;
|
||||
|
||||
|
||||
/// Position::flip() flips position with the white and black sides reversed. This
|
||||
/// is only useful for debugging especially for finding evaluation symmetry bugs.
|
||||
@@ -1526,7 +1422,7 @@ void Position::flip() {
|
||||
thisThread = pos.this_thread();
|
||||
nodes = pos.nodes_searched();
|
||||
chess960 = pos.is_chess960();
|
||||
startPosPly = pos.startpos_ply_counter();
|
||||
gamePly = pos.game_ply();
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
||||
if (!pos.is_empty(s))
|
||||
@@ -1593,7 +1489,7 @@ bool Position::pos_is_ok(int* failedStep) const {
|
||||
|
||||
if ((*step)++, debugKingCount)
|
||||
{
|
||||
int kingCount[2] = {};
|
||||
int kingCount[COLOR_NB] = {};
|
||||
|
||||
for (Square s = SQ_A1; s <= SQ_H8; s++)
|
||||
if (type_of(piece_on(s)) == KING)
|
||||
|
||||
Reference in New Issue
Block a user