DroidFish: Updated stockfish engine to version 3.

This commit is contained in:
Peter Osterlund
2013-05-03 17:03:42 +00:00
parent 3f55b61865
commit 34b9fd139f
42 changed files with 2092 additions and 2383 deletions

View File

@@ -1,7 +1,7 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -17,7 +17,7 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm>
#include <algorithm> // For std::min
#include <cassert>
#include <cstring>
@@ -38,15 +38,29 @@ namespace {
const Value RedundantQueenPenalty = Value(320);
const Value RedundantRookPenalty = Value(554);
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
// pair pawn knight bishop rook queen
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
const int QuadraticCoefficientsSameColor[][8] = {
{ 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 },
{ 7, 25, 4, 7, 7, 7 }, { -27, -2, 46, 100, 56, 7 }, { 58, 29, 83, 148, -3, -25 } };
const int QuadraticCoefficientsSameColor[][PIECE_TYPE_NB] = {
// pair pawn knight bishop rook queen
{ 7 }, // Bishop pair
{ 39, 2 }, // Pawn
{ 35, 271, -4 }, // Knight
{ 7, 105, 4, 7 }, // Bishop
{ -27, -2, 46, 100, 56 }, // Rook
{ 58, 29, 83, 148, -3, -25 } // Queen
};
const int QuadraticCoefficientsOppositeColor[][8] = {
{ 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 },
{ 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } };
const int QuadraticCoefficientsOppositeColor[][PIECE_TYPE_NB] = {
// THEIR PIECES
// pair pawn knight bishop rook queen
{ 41 }, // Bishop pair
{ 37, 41 }, // Pawn
{ 10, 62, 41 }, // Knight OUR PIECES
{ 57, 64, 39, 41 }, // Bishop
{ 50, 40, 23, -22, 41 }, // Rook
{ 106, 101, 3, 151, 171, 41 } // Queen
};
// Endgame evaluation and scaling functions accessed direcly and not through
// the function maps because correspond to more then one material hash key.
@@ -81,18 +95,54 @@ namespace {
&& pos.piece_count(Them, PAWN) >= 1;
}
/// imbalance() calculates imbalance comparing piece count of each
/// piece type for both colors.
template<Color Us>
int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
int pt1, pt2, pc, v;
int value = 0;
// Redundancy of major pieces, formula based on Kaufman's paper
// "The Evaluation of Material Imbalances in Chess"
if (pieceCount[Us][ROOK] > 0)
value -= RedundantRookPenalty * (pieceCount[Us][ROOK] - 1)
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
// Second-degree polynomial material imbalance by Tord Romstad
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
{
pc = pieceCount[Us][pt1];
if (!pc)
continue;
v = LinearCoefficients[pt1];
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
value += pc * v;
}
return value;
}
} // namespace
namespace Material {
/// MaterialTable::probe() takes a position object as input, looks up a MaterialEntry
/// Material::probe() takes a position object as input, looks up a MaterialEntry
/// object, and returns a pointer to it. If the material configuration is not
/// already present in the table, it is computed and stored there, so we don't
/// have to recompute everything when the same material configuration occurs again.
MaterialEntry* MaterialTable::probe(const Position& pos) {
Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
Key key = pos.material_key();
MaterialEntry* e = entries[key];
Entry* e = entries[key];
// If e->key matches the position's material hash key, it means that we
// have analysed this material configuration before, and we can simply
@@ -100,10 +150,10 @@ MaterialEntry* MaterialTable::probe(const Position& pos) {
if (e->key == key)
return e;
memset(e, 0, sizeof(MaterialEntry));
memset(e, 0, sizeof(Entry));
e->key = key;
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
e->gamePhase = MaterialTable::game_phase(pos);
e->gamePhase = game_phase(pos);
// Let's look if we have a specialized evaluation function for this
// particular material configuration. First we look for a fixed
@@ -215,7 +265,7 @@ MaterialEntry* MaterialTable::probe(const Position& pos) {
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
// for the bishop pair "extended piece", this allow us to be more flexible
// in defining bishop pair bonuses.
const int pieceCount[2][8] = {
const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = {
{ pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT),
pos.piece_count(WHITE, BISHOP) , pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) },
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
@@ -226,47 +276,11 @@ MaterialEntry* MaterialTable::probe(const Position& pos) {
}
/// MaterialTable::imbalance() calculates imbalance comparing piece count of each
/// piece type for both colors.
template<Color Us>
int MaterialTable::imbalance(const int pieceCount[][8]) {
const Color Them = (Us == WHITE ? BLACK : WHITE);
int pt1, pt2, pc, v;
int value = 0;
// Redundancy of major pieces, formula based on Kaufman's paper
// "The Evaluation of Material Imbalances in Chess"
if (pieceCount[Us][ROOK] > 0)
value -= RedundantRookPenalty * (pieceCount[Us][ROOK] - 1)
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
// Second-degree polynomial material imbalance by Tord Romstad
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
{
pc = pieceCount[Us][pt1];
if (!pc)
continue;
v = LinearCoefficients[pt1];
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
value += pc * v;
}
return value;
}
/// MaterialTable::game_phase() calculates the phase given the current
/// Material::game_phase() calculates the phase given the current
/// position. Because the phase is strictly a function of the material, it
/// is stored in MaterialEntry.
Phase MaterialTable::game_phase(const Position& pos) {
Phase game_phase(const Position& pos) {
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
@@ -274,3 +288,5 @@ Phase MaterialTable::game_phase(const Position& pos) {
: npm <= EndgameLimit ? PHASE_ENDGAME
: Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
}
} // namespace Material