mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-17 11:12:17 +01:00
DroidFish: Updated stockfish engine to version 3.
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2012 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2013 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@@ -17,7 +17,7 @@
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <algorithm>
|
||||
#include <algorithm> // For std::min
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
|
||||
@@ -38,15 +38,29 @@ namespace {
|
||||
const Value RedundantQueenPenalty = Value(320);
|
||||
const Value RedundantRookPenalty = Value(554);
|
||||
|
||||
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
|
||||
// pair pawn knight bishop rook queen
|
||||
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
|
||||
|
||||
const int QuadraticCoefficientsSameColor[][8] = {
|
||||
{ 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 },
|
||||
{ 7, 25, 4, 7, 7, 7 }, { -27, -2, 46, 100, 56, 7 }, { 58, 29, 83, 148, -3, -25 } };
|
||||
const int QuadraticCoefficientsSameColor[][PIECE_TYPE_NB] = {
|
||||
// pair pawn knight bishop rook queen
|
||||
{ 7 }, // Bishop pair
|
||||
{ 39, 2 }, // Pawn
|
||||
{ 35, 271, -4 }, // Knight
|
||||
{ 7, 105, 4, 7 }, // Bishop
|
||||
{ -27, -2, 46, 100, 56 }, // Rook
|
||||
{ 58, 29, 83, 148, -3, -25 } // Queen
|
||||
};
|
||||
|
||||
const int QuadraticCoefficientsOppositeColor[][8] = {
|
||||
{ 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 },
|
||||
{ 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } };
|
||||
const int QuadraticCoefficientsOppositeColor[][PIECE_TYPE_NB] = {
|
||||
// THEIR PIECES
|
||||
// pair pawn knight bishop rook queen
|
||||
{ 41 }, // Bishop pair
|
||||
{ 37, 41 }, // Pawn
|
||||
{ 10, 62, 41 }, // Knight OUR PIECES
|
||||
{ 57, 64, 39, 41 }, // Bishop
|
||||
{ 50, 40, 23, -22, 41 }, // Rook
|
||||
{ 106, 101, 3, 151, 171, 41 } // Queen
|
||||
};
|
||||
|
||||
// Endgame evaluation and scaling functions accessed direcly and not through
|
||||
// the function maps because correspond to more then one material hash key.
|
||||
@@ -81,18 +95,54 @@ namespace {
|
||||
&& pos.piece_count(Them, PAWN) >= 1;
|
||||
}
|
||||
|
||||
/// imbalance() calculates imbalance comparing piece count of each
|
||||
/// piece type for both colors.
|
||||
|
||||
template<Color Us>
|
||||
int imbalance(const int pieceCount[][PIECE_TYPE_NB]) {
|
||||
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
||||
int pt1, pt2, pc, v;
|
||||
int value = 0;
|
||||
|
||||
// Redundancy of major pieces, formula based on Kaufman's paper
|
||||
// "The Evaluation of Material Imbalances in Chess"
|
||||
if (pieceCount[Us][ROOK] > 0)
|
||||
value -= RedundantRookPenalty * (pieceCount[Us][ROOK] - 1)
|
||||
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
|
||||
|
||||
// Second-degree polynomial material imbalance by Tord Romstad
|
||||
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
|
||||
{
|
||||
pc = pieceCount[Us][pt1];
|
||||
if (!pc)
|
||||
continue;
|
||||
|
||||
v = LinearCoefficients[pt1];
|
||||
|
||||
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
|
||||
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
|
||||
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
|
||||
|
||||
value += pc * v;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
namespace Material {
|
||||
|
||||
/// MaterialTable::probe() takes a position object as input, looks up a MaterialEntry
|
||||
/// Material::probe() takes a position object as input, looks up a MaterialEntry
|
||||
/// object, and returns a pointer to it. If the material configuration is not
|
||||
/// already present in the table, it is computed and stored there, so we don't
|
||||
/// have to recompute everything when the same material configuration occurs again.
|
||||
|
||||
MaterialEntry* MaterialTable::probe(const Position& pos) {
|
||||
Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
|
||||
|
||||
Key key = pos.material_key();
|
||||
MaterialEntry* e = entries[key];
|
||||
Entry* e = entries[key];
|
||||
|
||||
// If e->key matches the position's material hash key, it means that we
|
||||
// have analysed this material configuration before, and we can simply
|
||||
@@ -100,10 +150,10 @@ MaterialEntry* MaterialTable::probe(const Position& pos) {
|
||||
if (e->key == key)
|
||||
return e;
|
||||
|
||||
memset(e, 0, sizeof(MaterialEntry));
|
||||
memset(e, 0, sizeof(Entry));
|
||||
e->key = key;
|
||||
e->factor[WHITE] = e->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
|
||||
e->gamePhase = MaterialTable::game_phase(pos);
|
||||
e->gamePhase = game_phase(pos);
|
||||
|
||||
// Let's look if we have a specialized evaluation function for this
|
||||
// particular material configuration. First we look for a fixed
|
||||
@@ -215,7 +265,7 @@ MaterialEntry* MaterialTable::probe(const Position& pos) {
|
||||
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
|
||||
// for the bishop pair "extended piece", this allow us to be more flexible
|
||||
// in defining bishop pair bonuses.
|
||||
const int pieceCount[2][8] = {
|
||||
const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = {
|
||||
{ pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT),
|
||||
pos.piece_count(WHITE, BISHOP) , pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) },
|
||||
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
|
||||
@@ -226,47 +276,11 @@ MaterialEntry* MaterialTable::probe(const Position& pos) {
|
||||
}
|
||||
|
||||
|
||||
/// MaterialTable::imbalance() calculates imbalance comparing piece count of each
|
||||
/// piece type for both colors.
|
||||
|
||||
template<Color Us>
|
||||
int MaterialTable::imbalance(const int pieceCount[][8]) {
|
||||
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
||||
int pt1, pt2, pc, v;
|
||||
int value = 0;
|
||||
|
||||
// Redundancy of major pieces, formula based on Kaufman's paper
|
||||
// "The Evaluation of Material Imbalances in Chess"
|
||||
if (pieceCount[Us][ROOK] > 0)
|
||||
value -= RedundantRookPenalty * (pieceCount[Us][ROOK] - 1)
|
||||
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
|
||||
|
||||
// Second-degree polynomial material imbalance by Tord Romstad
|
||||
for (pt1 = NO_PIECE_TYPE; pt1 <= QUEEN; pt1++)
|
||||
{
|
||||
pc = pieceCount[Us][pt1];
|
||||
if (!pc)
|
||||
continue;
|
||||
|
||||
v = LinearCoefficients[pt1];
|
||||
|
||||
for (pt2 = NO_PIECE_TYPE; pt2 <= pt1; pt2++)
|
||||
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
|
||||
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
|
||||
|
||||
value += pc * v;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
|
||||
/// MaterialTable::game_phase() calculates the phase given the current
|
||||
/// Material::game_phase() calculates the phase given the current
|
||||
/// position. Because the phase is strictly a function of the material, it
|
||||
/// is stored in MaterialEntry.
|
||||
|
||||
Phase MaterialTable::game_phase(const Position& pos) {
|
||||
Phase game_phase(const Position& pos) {
|
||||
|
||||
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
|
||||
|
||||
@@ -274,3 +288,5 @@ Phase MaterialTable::game_phase(const Position& pos) {
|
||||
: npm <= EndgameLimit ? PHASE_ENDGAME
|
||||
: Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
|
||||
}
|
||||
|
||||
} // namespace Material
|
||||
|
||||
Reference in New Issue
Block a user