mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-13 09:32:39 +01:00
Moved DroidFish project to trunk/
This commit is contained in:
345
DroidFish/jni/stockfish/thread.cpp
Normal file
345
DroidFish/jni/stockfish/thread.cpp
Normal file
@@ -0,0 +1,345 @@
|
||||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Stockfish is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <iostream>
|
||||
|
||||
#include "thread.h"
|
||||
#include "ucioption.h"
|
||||
|
||||
ThreadsManager Threads; // Global object definition
|
||||
|
||||
namespace { extern "C" {
|
||||
|
||||
// start_routine() is the C function which is called when a new thread
|
||||
// is launched. It simply calls idle_loop() with the supplied threadID.
|
||||
// There are two versions of this function; one for POSIX threads and
|
||||
// one for Windows threads.
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
|
||||
DWORD WINAPI start_routine(LPVOID threadID) {
|
||||
|
||||
Threads.idle_loop(*(int*)threadID, NULL);
|
||||
return 0;
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
void* start_routine(void* threadID) {
|
||||
|
||||
Threads.idle_loop(*(int*)threadID, NULL);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
} }
|
||||
|
||||
|
||||
// wake_up() wakes up the thread, normally at the beginning of the search or,
|
||||
// if "sleeping threads" is used, when there is some work to do.
|
||||
|
||||
void Thread::wake_up() {
|
||||
|
||||
lock_grab(&sleepLock);
|
||||
cond_signal(&sleepCond);
|
||||
lock_release(&sleepLock);
|
||||
}
|
||||
|
||||
|
||||
// cutoff_occurred() checks whether a beta cutoff has occurred in
|
||||
// the thread's currently active split point, or in some ancestor of
|
||||
// the current split point.
|
||||
|
||||
bool Thread::cutoff_occurred() const {
|
||||
|
||||
for (SplitPoint* sp = splitPoint; sp; sp = sp->parent)
|
||||
if (sp->is_betaCutoff)
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// is_available_to() checks whether the thread is available to help the thread with
|
||||
// threadID "master" at a split point. An obvious requirement is that thread must be
|
||||
// idle. With more than two threads, this is not by itself sufficient: If the thread
|
||||
// is the master of some active split point, it is only available as a slave to the
|
||||
// threads which are busy searching the split point at the top of "slave"'s split
|
||||
// point stack (the "helpful master concept" in YBWC terminology).
|
||||
|
||||
bool Thread::is_available_to(int master) const {
|
||||
|
||||
if (state != AVAILABLE)
|
||||
return false;
|
||||
|
||||
// Make a local copy to be sure doesn't become zero under our feet while
|
||||
// testing next condition and so leading to an out of bound access.
|
||||
int localActiveSplitPoints = activeSplitPoints;
|
||||
|
||||
// No active split points means that the thread is available as a slave for any
|
||||
// other thread otherwise apply the "helpful master" concept if possible.
|
||||
if ( !localActiveSplitPoints
|
||||
|| splitPoints[localActiveSplitPoints - 1].is_slave[master])
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// read_uci_options() updates number of active threads and other internal
|
||||
// parameters according to the UCI options values. It is called before
|
||||
// to start a new search.
|
||||
|
||||
void ThreadsManager::read_uci_options() {
|
||||
|
||||
maxThreadsPerSplitPoint = Options["Maximum Number of Threads per Split Point"].value<int>();
|
||||
minimumSplitDepth = Options["Minimum Split Depth"].value<int>() * ONE_PLY;
|
||||
useSleepingThreads = Options["Use Sleeping Threads"].value<bool>();
|
||||
activeThreads = Options["Threads"].value<int>();
|
||||
}
|
||||
|
||||
|
||||
// init() is called during startup. Initializes locks and condition variables
|
||||
// and launches all threads sending them immediately to sleep.
|
||||
|
||||
void ThreadsManager::init() {
|
||||
|
||||
int threadID[MAX_THREADS];
|
||||
|
||||
// This flag is needed to properly end the threads when program exits
|
||||
allThreadsShouldExit = false;
|
||||
|
||||
// Threads will sent to sleep as soon as created, only main thread is kept alive
|
||||
activeThreads = 1;
|
||||
threads[0].state = Thread::SEARCHING;
|
||||
|
||||
// Allocate pawn and material hash tables for main thread
|
||||
init_hash_tables();
|
||||
|
||||
lock_init(&mpLock);
|
||||
|
||||
// Initialize thread and split point locks
|
||||
for (int i = 0; i < MAX_THREADS; i++)
|
||||
{
|
||||
lock_init(&threads[i].sleepLock);
|
||||
cond_init(&threads[i].sleepCond);
|
||||
|
||||
for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
|
||||
lock_init(&(threads[i].splitPoints[j].lock));
|
||||
}
|
||||
|
||||
// Create and startup all the threads but the main that is already running
|
||||
for (int i = 1; i < MAX_THREADS; i++)
|
||||
{
|
||||
threads[i].state = Thread::INITIALIZING;
|
||||
threadID[i] = i;
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
bool ok = (CreateThread(NULL, 0, start_routine, (LPVOID)&threadID[i], 0, NULL) != NULL);
|
||||
#else
|
||||
pthread_t pthreadID;
|
||||
bool ok = (pthread_create(&pthreadID, NULL, start_routine, (void*)&threadID[i]) == 0);
|
||||
pthread_detach(pthreadID);
|
||||
#endif
|
||||
if (!ok)
|
||||
{
|
||||
std::cout << "Failed to create thread number " << i << std::endl;
|
||||
::exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
// Wait until the thread has finished launching and is gone to sleep
|
||||
while (threads[i].state == Thread::INITIALIZING) {}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// exit() is called to cleanly exit the threads when the program finishes
|
||||
|
||||
void ThreadsManager::exit() {
|
||||
|
||||
// Force the woken up threads to exit idle_loop() and hence terminate
|
||||
allThreadsShouldExit = true;
|
||||
|
||||
for (int i = 0; i < MAX_THREADS; i++)
|
||||
{
|
||||
// Wake up all the threads and waits for termination
|
||||
if (i != 0)
|
||||
{
|
||||
threads[i].wake_up();
|
||||
while (threads[i].state != Thread::TERMINATED) {}
|
||||
}
|
||||
|
||||
// Now we can safely destroy the locks and wait conditions
|
||||
lock_destroy(&threads[i].sleepLock);
|
||||
cond_destroy(&threads[i].sleepCond);
|
||||
|
||||
for (int j = 0; j < MAX_ACTIVE_SPLIT_POINTS; j++)
|
||||
lock_destroy(&(threads[i].splitPoints[j].lock));
|
||||
}
|
||||
|
||||
lock_destroy(&mpLock);
|
||||
}
|
||||
|
||||
|
||||
// init_hash_tables() dynamically allocates pawn and material hash tables
|
||||
// according to the number of active threads. This avoids preallocating
|
||||
// memory for all possible threads if only few are used as, for instance,
|
||||
// on mobile devices where memory is scarce and allocating for MAX_THREADS
|
||||
// threads could even result in a crash.
|
||||
|
||||
void ThreadsManager::init_hash_tables() {
|
||||
|
||||
for (int i = 0; i < activeThreads; i++)
|
||||
{
|
||||
threads[i].pawnTable.init();
|
||||
threads[i].materialTable.init();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// available_slave_exists() tries to find an idle thread which is available as
|
||||
// a slave for the thread with threadID "master".
|
||||
|
||||
bool ThreadsManager::available_slave_exists(int master) const {
|
||||
|
||||
assert(master >= 0 && master < activeThreads);
|
||||
|
||||
for (int i = 0; i < activeThreads; i++)
|
||||
if (i != master && threads[i].is_available_to(master))
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// split() does the actual work of distributing the work at a node between
|
||||
// several available threads. If it does not succeed in splitting the
|
||||
// node (because no idle threads are available, or because we have no unused
|
||||
// split point objects), the function immediately returns. If splitting is
|
||||
// possible, a SplitPoint object is initialized with all the data that must be
|
||||
// copied to the helper threads and we tell our helper threads that they have
|
||||
// been assigned work. This will cause them to instantly leave their idle loops and
|
||||
// call search().When all threads have returned from search() then split() returns.
|
||||
|
||||
template <bool Fake>
|
||||
void ThreadsManager::split(Position& pos, SearchStack* ss, Value* alpha, const Value beta,
|
||||
Value* bestValue, Depth depth, Move threatMove,
|
||||
int moveCount, MovePicker* mp, bool pvNode) {
|
||||
assert(pos.is_ok());
|
||||
assert(*bestValue >= -VALUE_INFINITE);
|
||||
assert(*bestValue <= *alpha);
|
||||
assert(*alpha < beta);
|
||||
assert(beta <= VALUE_INFINITE);
|
||||
assert(depth > DEPTH_ZERO);
|
||||
assert(pos.thread() >= 0 && pos.thread() < activeThreads);
|
||||
assert(activeThreads > 1);
|
||||
|
||||
int i, master = pos.thread();
|
||||
Thread& masterThread = threads[master];
|
||||
|
||||
lock_grab(&mpLock);
|
||||
|
||||
// If no other thread is available to help us, or if we have too many
|
||||
// active split points, don't split.
|
||||
if ( !available_slave_exists(master)
|
||||
|| masterThread.activeSplitPoints >= MAX_ACTIVE_SPLIT_POINTS)
|
||||
{
|
||||
lock_release(&mpLock);
|
||||
return;
|
||||
}
|
||||
|
||||
// Pick the next available split point object from the split point stack
|
||||
SplitPoint& splitPoint = masterThread.splitPoints[masterThread.activeSplitPoints++];
|
||||
|
||||
// Initialize the split point object
|
||||
splitPoint.parent = masterThread.splitPoint;
|
||||
splitPoint.master = master;
|
||||
splitPoint.is_betaCutoff = false;
|
||||
splitPoint.depth = depth;
|
||||
splitPoint.threatMove = threatMove;
|
||||
splitPoint.alpha = *alpha;
|
||||
splitPoint.beta = beta;
|
||||
splitPoint.pvNode = pvNode;
|
||||
splitPoint.bestValue = *bestValue;
|
||||
splitPoint.mp = mp;
|
||||
splitPoint.moveCount = moveCount;
|
||||
splitPoint.pos = &pos;
|
||||
splitPoint.nodes = 0;
|
||||
splitPoint.ss = ss;
|
||||
for (i = 0; i < activeThreads; i++)
|
||||
splitPoint.is_slave[i] = false;
|
||||
|
||||
masterThread.splitPoint = &splitPoint;
|
||||
|
||||
// If we are here it means we are not available
|
||||
assert(masterThread.state != Thread::AVAILABLE);
|
||||
|
||||
int workersCnt = 1; // At least the master is included
|
||||
|
||||
// Allocate available threads setting state to THREAD_BOOKED
|
||||
for (i = 0; !Fake && i < activeThreads && workersCnt < maxThreadsPerSplitPoint; i++)
|
||||
if (i != master && threads[i].is_available_to(master))
|
||||
{
|
||||
threads[i].state = Thread::BOOKED;
|
||||
threads[i].splitPoint = &splitPoint;
|
||||
splitPoint.is_slave[i] = true;
|
||||
workersCnt++;
|
||||
}
|
||||
|
||||
assert(Fake || workersCnt > 1);
|
||||
|
||||
// We can release the lock because slave threads are already booked and master is not available
|
||||
lock_release(&mpLock);
|
||||
|
||||
// Tell the threads that they have work to do. This will make them leave
|
||||
// their idle loop.
|
||||
for (i = 0; i < activeThreads; i++)
|
||||
if (i == master || splitPoint.is_slave[i])
|
||||
{
|
||||
assert(i == master || threads[i].state == Thread::BOOKED);
|
||||
|
||||
threads[i].state = Thread::WORKISWAITING; // This makes the slave to exit from idle_loop()
|
||||
|
||||
if (useSleepingThreads && i != master)
|
||||
threads[i].wake_up();
|
||||
}
|
||||
|
||||
// Everything is set up. The master thread enters the idle loop, from
|
||||
// which it will instantly launch a search, because its state is
|
||||
// THREAD_WORKISWAITING. We send the split point as a second parameter to the
|
||||
// idle loop, which means that the main thread will return from the idle
|
||||
// loop when all threads have finished their work at this split point.
|
||||
idle_loop(master, &splitPoint);
|
||||
|
||||
// We have returned from the idle loop, which means that all threads are
|
||||
// finished. Update alpha and bestValue, and return.
|
||||
lock_grab(&mpLock);
|
||||
|
||||
*alpha = splitPoint.alpha;
|
||||
*bestValue = splitPoint.bestValue;
|
||||
masterThread.activeSplitPoints--;
|
||||
masterThread.splitPoint = splitPoint.parent;
|
||||
pos.set_nodes_searched(pos.nodes_searched() + splitPoint.nodes);
|
||||
|
||||
lock_release(&mpLock);
|
||||
}
|
||||
|
||||
// Explicit template instantiations
|
||||
template void ThreadsManager::split<false>(Position&, SearchStack*, Value*, const Value, Value*, Depth, Move, int, MovePicker*, bool);
|
||||
template void ThreadsManager::split<true>(Position&, SearchStack*, Value*, const Value, Value*, Depth, Move, int, MovePicker*, bool);
|
||||
Reference in New Issue
Block a user