mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-12 09:02:41 +01:00
Moved DroidFish project to trunk/
This commit is contained in:
285
DroidFish/jni/stockfish/material.cpp
Normal file
285
DroidFish/jni/stockfish/material.cpp
Normal file
@@ -0,0 +1,285 @@
|
||||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2010 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
the Free Software Foundation, either version 3 of the License, or
|
||||
(at your option) any later version.
|
||||
|
||||
Stockfish is distributed in the hope that it will be useful,
|
||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
GNU General Public License for more details.
|
||||
|
||||
You should have received a copy of the GNU General Public License
|
||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include <cassert>
|
||||
#include <cstring>
|
||||
|
||||
#include "material.h"
|
||||
|
||||
using namespace std;
|
||||
|
||||
namespace {
|
||||
|
||||
// Values modified by Joona Kiiski
|
||||
const Value MidgameLimit = Value(15581);
|
||||
const Value EndgameLimit = Value(3998);
|
||||
|
||||
// Scale factors used when one side has no more pawns
|
||||
const int NoPawnsSF[4] = { 6, 12, 32 };
|
||||
|
||||
// Polynomial material balance parameters
|
||||
const Value RedundantQueenPenalty = Value(320);
|
||||
const Value RedundantRookPenalty = Value(554);
|
||||
|
||||
const int LinearCoefficients[6] = { 1617, -162, -1172, -190, 105, 26 };
|
||||
|
||||
const int QuadraticCoefficientsSameColor[][8] = {
|
||||
{ 7, 7, 7, 7, 7, 7 }, { 39, 2, 7, 7, 7, 7 }, { 35, 271, -4, 7, 7, 7 },
|
||||
{ 7, 25, 4, 7, 7, 7 }, { -27, -2, 46, 100, 56, 7 }, { 58, 29, 83, 148, -3, -25 } };
|
||||
|
||||
const int QuadraticCoefficientsOppositeColor[][8] = {
|
||||
{ 41, 41, 41, 41, 41, 41 }, { 37, 41, 41, 41, 41, 41 }, { 10, 62, 41, 41, 41, 41 },
|
||||
{ 57, 64, 39, 41, 41, 41 }, { 50, 40, 23, -22, 41, 41 }, { 106, 101, 3, 151, 171, 41 } };
|
||||
|
||||
// Endgame evaluation and scaling functions accessed direcly and not through
|
||||
// the function maps because correspond to more then one material hash key.
|
||||
Endgame<Value, KmmKm> EvaluateKmmKm[] = { Endgame<Value, KmmKm>(WHITE), Endgame<Value, KmmKm>(BLACK) };
|
||||
Endgame<Value, KXK> EvaluateKXK[] = { Endgame<Value, KXK>(WHITE), Endgame<Value, KXK>(BLACK) };
|
||||
|
||||
Endgame<ScaleFactor, KBPsK> ScaleKBPsK[] = { Endgame<ScaleFactor, KBPsK>(WHITE), Endgame<ScaleFactor, KBPsK>(BLACK) };
|
||||
Endgame<ScaleFactor, KQKRPs> ScaleKQKRPs[] = { Endgame<ScaleFactor, KQKRPs>(WHITE), Endgame<ScaleFactor, KQKRPs>(BLACK) };
|
||||
Endgame<ScaleFactor, KPsK> ScaleKPsK[] = { Endgame<ScaleFactor, KPsK>(WHITE), Endgame<ScaleFactor, KPsK>(BLACK) };
|
||||
Endgame<ScaleFactor, KPKP> ScaleKPKP[] = { Endgame<ScaleFactor, KPKP>(WHITE), Endgame<ScaleFactor, KPKP>(BLACK) };
|
||||
|
||||
// Helper templates used to detect a given material distribution
|
||||
template<Color Us> bool is_KXK(const Position& pos) {
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
return pos.non_pawn_material(Them) == VALUE_ZERO
|
||||
&& pos.piece_count(Them, PAWN) == 0
|
||||
&& pos.non_pawn_material(Us) >= RookValueMidgame;
|
||||
}
|
||||
|
||||
template<Color Us> bool is_KBPsKs(const Position& pos) {
|
||||
return pos.non_pawn_material(Us) == BishopValueMidgame
|
||||
&& pos.piece_count(Us, BISHOP) == 1
|
||||
&& pos.piece_count(Us, PAWN) >= 1;
|
||||
}
|
||||
|
||||
template<Color Us> bool is_KQKRPs(const Position& pos) {
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
return pos.piece_count(Us, PAWN) == 0
|
||||
&& pos.non_pawn_material(Us) == QueenValueMidgame
|
||||
&& pos.piece_count(Us, QUEEN) == 1
|
||||
&& pos.piece_count(Them, ROOK) == 1
|
||||
&& pos.piece_count(Them, PAWN) >= 1;
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
/// MaterialInfoTable c'tor and d'tor allocate and free the space for Endgames
|
||||
|
||||
void MaterialInfoTable::init() { Base::init(); if (!funcs) funcs = new Endgames(); }
|
||||
MaterialInfoTable::~MaterialInfoTable() { delete funcs; }
|
||||
|
||||
|
||||
/// MaterialInfoTable::get_material_info() takes a position object as input,
|
||||
/// computes or looks up a MaterialInfo object, and returns a pointer to it.
|
||||
/// If the material configuration is not already present in the table, it
|
||||
/// is stored there, so we don't have to recompute everything when the
|
||||
/// same material configuration occurs again.
|
||||
|
||||
MaterialInfo* MaterialInfoTable::get_material_info(const Position& pos) const {
|
||||
|
||||
Key key = pos.get_material_key();
|
||||
MaterialInfo* mi = probe(key);
|
||||
|
||||
// If mi->key matches the position's material hash key, it means that we
|
||||
// have analysed this material configuration before, and we can simply
|
||||
// return the information we found the last time instead of recomputing it.
|
||||
if (mi->key == key)
|
||||
return mi;
|
||||
|
||||
// Initialize MaterialInfo entry
|
||||
memset(mi, 0, sizeof(MaterialInfo));
|
||||
mi->key = key;
|
||||
mi->factor[WHITE] = mi->factor[BLACK] = (uint8_t)SCALE_FACTOR_NORMAL;
|
||||
|
||||
// Store game phase
|
||||
mi->gamePhase = MaterialInfoTable::game_phase(pos);
|
||||
|
||||
// Let's look if we have a specialized evaluation function for this
|
||||
// particular material configuration. First we look for a fixed
|
||||
// configuration one, then a generic one if previous search failed.
|
||||
if ((mi->evaluationFunction = funcs->get<EndgameBase<Value> >(key)) != NULL)
|
||||
return mi;
|
||||
|
||||
if (is_KXK<WHITE>(pos))
|
||||
{
|
||||
mi->evaluationFunction = &EvaluateKXK[WHITE];
|
||||
return mi;
|
||||
}
|
||||
|
||||
if (is_KXK<BLACK>(pos))
|
||||
{
|
||||
mi->evaluationFunction = &EvaluateKXK[BLACK];
|
||||
return mi;
|
||||
}
|
||||
|
||||
if (!pos.pieces(PAWN) && !pos.pieces(ROOK) && !pos.pieces(QUEEN))
|
||||
{
|
||||
// Minor piece endgame with at least one minor piece per side and
|
||||
// no pawns. Note that the case KmmK is already handled by KXK.
|
||||
assert((pos.pieces(KNIGHT, WHITE) | pos.pieces(BISHOP, WHITE)));
|
||||
assert((pos.pieces(KNIGHT, BLACK) | pos.pieces(BISHOP, BLACK)));
|
||||
|
||||
if ( pos.piece_count(WHITE, BISHOP) + pos.piece_count(WHITE, KNIGHT) <= 2
|
||||
&& pos.piece_count(BLACK, BISHOP) + pos.piece_count(BLACK, KNIGHT) <= 2)
|
||||
{
|
||||
mi->evaluationFunction = &EvaluateKmmKm[WHITE];
|
||||
return mi;
|
||||
}
|
||||
}
|
||||
|
||||
// OK, we didn't find any special evaluation function for the current
|
||||
// material configuration. Is there a suitable scaling function?
|
||||
//
|
||||
// We face problems when there are several conflicting applicable
|
||||
// scaling functions and we need to decide which one to use.
|
||||
EndgameBase<ScaleFactor>* sf;
|
||||
|
||||
if ((sf = funcs->get<EndgameBase<ScaleFactor> >(key)) != NULL)
|
||||
{
|
||||
mi->scalingFunction[sf->color()] = sf;
|
||||
return mi;
|
||||
}
|
||||
|
||||
// Generic scaling functions that refer to more then one material
|
||||
// distribution. Should be probed after the specialized ones.
|
||||
// Note that these ones don't return after setting the function.
|
||||
if (is_KBPsKs<WHITE>(pos))
|
||||
mi->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
|
||||
|
||||
if (is_KBPsKs<BLACK>(pos))
|
||||
mi->scalingFunction[BLACK] = &ScaleKBPsK[BLACK];
|
||||
|
||||
if (is_KQKRPs<WHITE>(pos))
|
||||
mi->scalingFunction[WHITE] = &ScaleKQKRPs[WHITE];
|
||||
|
||||
else if (is_KQKRPs<BLACK>(pos))
|
||||
mi->scalingFunction[BLACK] = &ScaleKQKRPs[BLACK];
|
||||
|
||||
Value npm_w = pos.non_pawn_material(WHITE);
|
||||
Value npm_b = pos.non_pawn_material(BLACK);
|
||||
|
||||
if (npm_w + npm_b == VALUE_ZERO)
|
||||
{
|
||||
if (pos.piece_count(BLACK, PAWN) == 0)
|
||||
{
|
||||
assert(pos.piece_count(WHITE, PAWN) >= 2);
|
||||
mi->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
|
||||
}
|
||||
else if (pos.piece_count(WHITE, PAWN) == 0)
|
||||
{
|
||||
assert(pos.piece_count(BLACK, PAWN) >= 2);
|
||||
mi->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
|
||||
}
|
||||
else if (pos.piece_count(WHITE, PAWN) == 1 && pos.piece_count(BLACK, PAWN) == 1)
|
||||
{
|
||||
// This is a special case because we set scaling functions
|
||||
// for both colors instead of only one.
|
||||
mi->scalingFunction[WHITE] = &ScaleKPKP[WHITE];
|
||||
mi->scalingFunction[BLACK] = &ScaleKPKP[BLACK];
|
||||
}
|
||||
}
|
||||
|
||||
// No pawns makes it difficult to win, even with a material advantage
|
||||
if (pos.piece_count(WHITE, PAWN) == 0 && npm_w - npm_b <= BishopValueMidgame)
|
||||
{
|
||||
mi->factor[WHITE] = uint8_t
|
||||
(npm_w == npm_b || npm_w < RookValueMidgame ? 0 : NoPawnsSF[Min(pos.piece_count(WHITE, BISHOP), 2)]);
|
||||
}
|
||||
|
||||
if (pos.piece_count(BLACK, PAWN) == 0 && npm_b - npm_w <= BishopValueMidgame)
|
||||
{
|
||||
mi->factor[BLACK] = uint8_t
|
||||
(npm_w == npm_b || npm_b < RookValueMidgame ? 0 : NoPawnsSF[Min(pos.piece_count(BLACK, BISHOP), 2)]);
|
||||
}
|
||||
|
||||
// Compute the space weight
|
||||
if (npm_w + npm_b >= 2 * QueenValueMidgame + 4 * RookValueMidgame + 2 * KnightValueMidgame)
|
||||
{
|
||||
int minorPieceCount = pos.piece_count(WHITE, KNIGHT) + pos.piece_count(WHITE, BISHOP)
|
||||
+ pos.piece_count(BLACK, KNIGHT) + pos.piece_count(BLACK, BISHOP);
|
||||
|
||||
mi->spaceWeight = minorPieceCount * minorPieceCount;
|
||||
}
|
||||
|
||||
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
|
||||
// for the bishop pair "extended piece", this allow us to be more flexible
|
||||
// in defining bishop pair bonuses.
|
||||
const int pieceCount[2][8] = {
|
||||
{ pos.piece_count(WHITE, BISHOP) > 1, pos.piece_count(WHITE, PAWN), pos.piece_count(WHITE, KNIGHT),
|
||||
pos.piece_count(WHITE, BISHOP) , pos.piece_count(WHITE, ROOK), pos.piece_count(WHITE, QUEEN) },
|
||||
{ pos.piece_count(BLACK, BISHOP) > 1, pos.piece_count(BLACK, PAWN), pos.piece_count(BLACK, KNIGHT),
|
||||
pos.piece_count(BLACK, BISHOP) , pos.piece_count(BLACK, ROOK), pos.piece_count(BLACK, QUEEN) } };
|
||||
|
||||
mi->value = int16_t((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
|
||||
return mi;
|
||||
}
|
||||
|
||||
|
||||
/// MaterialInfoTable::imbalance() calculates imbalance comparing piece count of each
|
||||
/// piece type for both colors.
|
||||
|
||||
template<Color Us>
|
||||
int MaterialInfoTable::imbalance(const int pieceCount[][8]) {
|
||||
|
||||
const Color Them = (Us == WHITE ? BLACK : WHITE);
|
||||
|
||||
int pt1, pt2, pc, v;
|
||||
int value = 0;
|
||||
|
||||
// Redundancy of major pieces, formula based on Kaufman's paper
|
||||
// "The Evaluation of Material Imbalances in Chess"
|
||||
if (pieceCount[Us][ROOK] > 0)
|
||||
value -= RedundantRookPenalty * (pieceCount[Us][ROOK] - 1)
|
||||
+ RedundantQueenPenalty * pieceCount[Us][QUEEN];
|
||||
|
||||
// Second-degree polynomial material imbalance by Tord Romstad
|
||||
for (pt1 = PIECE_TYPE_NONE; pt1 <= QUEEN; pt1++)
|
||||
{
|
||||
pc = pieceCount[Us][pt1];
|
||||
if (!pc)
|
||||
continue;
|
||||
|
||||
v = LinearCoefficients[pt1];
|
||||
|
||||
for (pt2 = PIECE_TYPE_NONE; pt2 <= pt1; pt2++)
|
||||
v += QuadraticCoefficientsSameColor[pt1][pt2] * pieceCount[Us][pt2]
|
||||
+ QuadraticCoefficientsOppositeColor[pt1][pt2] * pieceCount[Them][pt2];
|
||||
|
||||
value += pc * v;
|
||||
}
|
||||
return value;
|
||||
}
|
||||
|
||||
|
||||
/// MaterialInfoTable::game_phase() calculates the phase given the current
|
||||
/// position. Because the phase is strictly a function of the material, it
|
||||
/// is stored in MaterialInfo.
|
||||
|
||||
Phase MaterialInfoTable::game_phase(const Position& pos) {
|
||||
|
||||
Value npm = pos.non_pawn_material(WHITE) + pos.non_pawn_material(BLACK);
|
||||
|
||||
return npm >= MidgameLimit ? PHASE_MIDGAME
|
||||
: npm <= EndgameLimit ? PHASE_ENDGAME
|
||||
: Phase(((npm - EndgameLimit) * 128) / (MidgameLimit - EndgameLimit));
|
||||
}
|
||||
Reference in New Issue
Block a user