mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-17 11:12:17 +01:00
DroidFish: Updated stockfish to version 6.
This commit is contained in:
@@ -1,7 +1,7 @@
|
||||
/*
|
||||
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
|
||||
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
|
||||
Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
|
||||
|
||||
Stockfish is free software: you can redistribute it and/or modify
|
||||
it under the terms of the GNU General Public License as published by
|
||||
@@ -23,7 +23,7 @@
|
||||
|
||||
#include "search.h"
|
||||
#include "timeman.h"
|
||||
#include "ucioption.h"
|
||||
#include "uci.h"
|
||||
|
||||
namespace {
|
||||
|
||||
@@ -33,10 +33,6 @@ namespace {
|
||||
const double MaxRatio = 7.0; // When in trouble, we can step over reserved time with this ratio
|
||||
const double StealRatio = 0.33; // However we must not steal time from remaining moves over this ratio
|
||||
|
||||
const double xscale = 9.3;
|
||||
const double xshift = 59.8;
|
||||
const double skewfactor = 0.172;
|
||||
|
||||
|
||||
// move_importance() is a skew-logistic function based on naive statistical
|
||||
// analysis of "how many games are still undecided after n half-moves". Game
|
||||
@@ -45,79 +41,76 @@ namespace {
|
||||
|
||||
double move_importance(int ply) {
|
||||
|
||||
return pow((1 + exp((ply - xshift) / xscale)), -skewfactor) + DBL_MIN; // Ensure non-zero
|
||||
const double XScale = 9.3;
|
||||
const double XShift = 59.8;
|
||||
const double Skew = 0.172;
|
||||
|
||||
return pow((1 + exp((ply - XShift) / XScale)), -Skew) + DBL_MIN; // Ensure non-zero
|
||||
}
|
||||
|
||||
template<TimeType T>
|
||||
int remaining(int myTime, int movesToGo, int currentPly, int slowMover)
|
||||
int remaining(int myTime, int movesToGo, int ply, int slowMover)
|
||||
{
|
||||
const double TMaxRatio = (T == OptimumTime ? 1 : MaxRatio);
|
||||
const double TStealRatio = (T == OptimumTime ? 0 : StealRatio);
|
||||
|
||||
double thisMoveImportance = (move_importance(currentPly) * slowMover) / 100;
|
||||
double moveImportance = (move_importance(ply) * slowMover) / 100;
|
||||
double otherMovesImportance = 0;
|
||||
|
||||
for (int i = 1; i < movesToGo; ++i)
|
||||
otherMovesImportance += move_importance(currentPly + 2 * i);
|
||||
otherMovesImportance += move_importance(ply + 2 * i);
|
||||
|
||||
double ratio1 = (TMaxRatio * thisMoveImportance) / (TMaxRatio * thisMoveImportance + otherMovesImportance);
|
||||
double ratio2 = (thisMoveImportance + TStealRatio * otherMovesImportance) / (thisMoveImportance + otherMovesImportance);
|
||||
double ratio1 = (TMaxRatio * moveImportance) / (TMaxRatio * moveImportance + otherMovesImportance);
|
||||
double ratio2 = (moveImportance + TStealRatio * otherMovesImportance) / (moveImportance + otherMovesImportance);
|
||||
|
||||
return int(myTime * std::min(ratio1, ratio2));
|
||||
return int(myTime * std::min(ratio1, ratio2)); // Intel C++ asks an explicit cast
|
||||
}
|
||||
|
||||
} // namespace
|
||||
|
||||
|
||||
void TimeManager::init(const Search::LimitsType& limits, int currentPly, Color us)
|
||||
/// init() is called at the beginning of the search and calculates the allowed
|
||||
/// thinking time out of the time control and current game ply. We support four
|
||||
/// different kinds of time controls, passed in 'limits':
|
||||
///
|
||||
/// inc == 0 && movestogo == 0 means: x basetime [sudden death!]
|
||||
/// inc == 0 && movestogo != 0 means: x moves in y minutes
|
||||
/// inc > 0 && movestogo == 0 means: x basetime + z increment
|
||||
/// inc > 0 && movestogo != 0 means: x moves in y minutes + z increment
|
||||
|
||||
void TimeManager::init(const Search::LimitsType& limits, Color us, int ply)
|
||||
{
|
||||
/* We support four different kinds of time controls:
|
||||
|
||||
increment == 0 && movesToGo == 0 means: x basetime [sudden death!]
|
||||
increment == 0 && movesToGo != 0 means: x moves in y minutes
|
||||
increment > 0 && movesToGo == 0 means: x basetime + z increment
|
||||
increment > 0 && movesToGo != 0 means: x moves in y minutes + z increment
|
||||
|
||||
Time management is adjusted by following parameters:
|
||||
|
||||
emergencyMoveHorizon: Be prepared to always play at least this many moves
|
||||
emergencyBaseTime : Always attempt to keep at least this much time (in ms) at clock
|
||||
emergencyMoveTime : Plus attempt to keep at least this much time for each remaining emergency move
|
||||
minThinkingTime : No matter what, use at least this much thinking before doing the move
|
||||
*/
|
||||
|
||||
int hypMTG, hypMyTime, t1, t2;
|
||||
|
||||
// Read uci parameters
|
||||
int moveOverhead = Options["Move Overhead"];
|
||||
int minThinkingTime = Options["Minimum Thinking Time"];
|
||||
int moveOverhead = Options["Move Overhead"];
|
||||
int slowMover = Options["Slow Mover"];
|
||||
|
||||
// Initialize unstablePvFactor to 1 and search times to maximum values
|
||||
unstablePvFactor = 1;
|
||||
optimumSearchTime = maximumSearchTime = std::max(limits.time[us], minThinkingTime);
|
||||
|
||||
// We calculate optimum time usage for different hypothetical "moves to go"-values and choose the
|
||||
// minimum of calculated search time values. Usually the greatest hypMTG gives the minimum values.
|
||||
for (hypMTG = 1; hypMTG <= (limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon); ++hypMTG)
|
||||
const int MaxMTG = limits.movestogo ? std::min(limits.movestogo, MoveHorizon) : MoveHorizon;
|
||||
|
||||
// We calculate optimum time usage for different hypothetical "moves to go"-values
|
||||
// and choose the minimum of calculated search time values. Usually the greatest
|
||||
// hypMTG gives the minimum values.
|
||||
for (int hypMTG = 1; hypMTG <= MaxMTG; ++hypMTG)
|
||||
{
|
||||
// Calculate thinking time for hypothetical "moves to go"-value
|
||||
hypMyTime = limits.time[us]
|
||||
+ limits.inc[us] * (hypMTG - 1)
|
||||
- moveOverhead * (2 + std::min(hypMTG, 40));
|
||||
int hypMyTime = limits.time[us]
|
||||
+ limits.inc[us] * (hypMTG - 1)
|
||||
- moveOverhead * (2 + std::min(hypMTG, 40));
|
||||
|
||||
hypMyTime = std::max(hypMyTime, 0);
|
||||
|
||||
t1 = minThinkingTime + remaining<OptimumTime>(hypMyTime, hypMTG, currentPly, slowMover);
|
||||
t2 = minThinkingTime + remaining<MaxTime>(hypMyTime, hypMTG, currentPly, slowMover);
|
||||
int t1 = minThinkingTime + remaining<OptimumTime>(hypMyTime, hypMTG, ply, slowMover);
|
||||
int t2 = minThinkingTime + remaining<MaxTime >(hypMyTime, hypMTG, ply, slowMover);
|
||||
|
||||
optimumSearchTime = std::min(optimumSearchTime, t1);
|
||||
maximumSearchTime = std::min(maximumSearchTime, t2);
|
||||
optimumSearchTime = std::min(t1, optimumSearchTime);
|
||||
maximumSearchTime = std::min(t2, maximumSearchTime);
|
||||
}
|
||||
|
||||
if (Options["Ponder"])
|
||||
optimumSearchTime += optimumSearchTime / 4;
|
||||
|
||||
// Make sure that maxSearchTime is not over absoluteMaxSearchTime
|
||||
optimumSearchTime = std::min(optimumSearchTime, maximumSearchTime);
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user