DroidFish: Updated stockfish to version 6.

This commit is contained in:
Peter Osterlund
2015-02-01 00:46:09 +00:00
parent fffd5107c3
commit 22e71744a1
48 changed files with 4233 additions and 4553 deletions

View File

@@ -1,7 +1,7 @@
/*
Stockfish, a UCI chess playing engine derived from Glaurung 2.1
Copyright (C) 2004-2008 Tord Romstad (Glaurung author)
Copyright (C) 2008-2014 Marco Costalba, Joona Kiiski, Tord Romstad
Copyright (C) 2008-2015 Marco Costalba, Joona Kiiski, Tord Romstad
Stockfish is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
@@ -17,33 +17,34 @@
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <algorithm> // For std::min
#include <algorithm> // For std::min
#include <cassert>
#include <cstring>
#include <cstring> // For std::memset
#include "material.h"
#include "thread.h"
using namespace std;
namespace {
// Polynomial material balance parameters
// Polynomial material imbalance parameters
// pair pawn knight bishop rook queen
const int Linear[6] = { 1852, -162, -1122, -183, 249, -154 };
const int QuadraticSameSide[][PIECE_TYPE_NB] = {
const int QuadraticOurs[][PIECE_TYPE_NB] = {
// OUR PIECES
// pair pawn knight bishop rook queen
{ 0 }, // Bishop pair
{ 39, 2 }, // Pawn
{ 35, 271, -4 }, // knight OUR PIECES
{ 35, 271, -4 }, // Knight OUR PIECES
{ 0, 105, 4, 0 }, // Bishop
{ -27, -2, 46, 100, -141 }, // Rook
{-177, 25, 129, 142, -137, 0 } // Queen
};
const int QuadraticOppositeSide[][PIECE_TYPE_NB] = {
const int QuadraticTheirs[][PIECE_TYPE_NB] = {
// THEIR PIECES
// pair pawn knight bishop rook queen
{ 0 }, // Bishop pair
@@ -56,7 +57,7 @@ namespace {
// Endgame evaluation and scaling functions are accessed directly and not through
// the function maps because they correspond to more than one material hash key.
Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
Endgame<KXK> EvaluateKXK[] = { Endgame<KXK>(WHITE), Endgame<KXK>(BLACK) };
Endgame<KBPsK> ScaleKBPsK[] = { Endgame<KBPsK>(WHITE), Endgame<KBPsK>(BLACK) };
Endgame<KQKRPs> ScaleKQKRPs[] = { Endgame<KQKRPs>(WHITE), Endgame<KQKRPs>(BLACK) };
@@ -104,8 +105,8 @@ namespace {
int v = Linear[pt1];
for (int pt2 = NO_PIECE_TYPE; pt2 <= pt1; ++pt2)
v += QuadraticSameSide[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticOppositeSide[pt1][pt2] * pieceCount[Them][pt2];
v += QuadraticOurs[pt1][pt2] * pieceCount[Us][pt2]
+ QuadraticTheirs[pt1][pt2] * pieceCount[Them][pt2];
bonus += pieceCount[Us][pt1] * v;
}
@@ -117,19 +118,16 @@ namespace {
namespace Material {
/// Material::probe() takes a position object as input, looks up a MaterialEntry
/// object, and returns a pointer to it. If the material configuration is not
/// already present in the table, it is computed and stored there, so we don't
/// have to recompute everything when the same material configuration occurs again.
/// Material::probe() looks up the current position's material configuration in
/// the material hash table. It returns a pointer to the Entry if the position
/// is found. Otherwise a new Entry is computed and stored there, so we don't
/// have to recompute all when the same material configuration occurs again.
Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
Entry* probe(const Position& pos) {
Key key = pos.material_key();
Entry* e = entries[key];
Entry* e = pos.this_thread()->materialTable[key];
// If e->key matches the position's material hash key, it means that we
// have analysed this material configuration before, and we can simply
// return the information we found the last time instead of recomputing it.
if (e->key == key)
return e;
@@ -141,7 +139,7 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
// Let's look if we have a specialized evaluation function for this particular
// material configuration. Firstly we look for a fixed configuration one, then
// for a generic one if the previous search failed.
if (endgames.probe(key, e->evaluationFunction))
if (pos.this_thread()->endgames.probe(key, e->evaluationFunction))
return e;
if (is_KXK<WHITE>(pos))
@@ -156,22 +154,19 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
return e;
}
// OK, we didn't find any special evaluation function for the current
// material configuration. Is there a suitable scaling function?
//
// We face problems when there are several conflicting applicable
// scaling functions and we need to decide which one to use.
// OK, we didn't find any special evaluation function for the current material
// configuration. Is there a suitable specialized scaling function?
EndgameBase<ScaleFactor>* sf;
if (endgames.probe(key, sf))
if (pos.this_thread()->endgames.probe(key, sf))
{
e->scalingFunction[sf->color()] = sf;
e->scalingFunction[sf->strong_side()] = sf; // Only strong color assigned
return e;
}
// Generic scaling functions that refer to more than one material
// distribution. They should be probed after the specialized ones.
// Note that these ones don't return after setting the function.
// We didn't find any specialized scaling function, so fall back on generic
// ones that refer to more than one material distribution. Note that in this
// case we don't return after setting the function.
if (is_KBPsKs<WHITE>(pos))
e->scalingFunction[WHITE] = &ScaleKBPsK[WHITE];
@@ -187,16 +182,18 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
Value npm_w = pos.non_pawn_material(WHITE);
Value npm_b = pos.non_pawn_material(BLACK);
if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN))
if (npm_w + npm_b == VALUE_ZERO && pos.pieces(PAWN)) // Only pawns on the board
{
if (!pos.count<PAWN>(BLACK))
{
assert(pos.count<PAWN>(WHITE) >= 2);
e->scalingFunction[WHITE] = &ScaleKPsK[WHITE];
}
else if (!pos.count<PAWN>(WHITE))
{
assert(pos.count<PAWN>(BLACK) >= 2);
e->scalingFunction[BLACK] = &ScaleKPsK[BLACK];
}
else if (pos.count<PAWN>(WHITE) == 1 && pos.count<PAWN>(BLACK) == 1)
@@ -208,14 +205,16 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
}
}
// No pawns makes it difficult to win, even with a material advantage. This
// catches some trivial draws like KK, KBK and KNK and gives a very drawish
// scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
// Zero or just one pawn makes it difficult to win, even with a small material
// advantage. This catches some trivial draws like KK, KBK and KNK and gives a
// drawish scale factor for cases such as KRKBP and KmmKm (except for KBBKN).
if (!pos.count<PAWN>(WHITE) && npm_w - npm_b <= BishopValueMg)
e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW : npm_b <= BishopValueMg ? 4 : 12);
e->factor[WHITE] = uint8_t(npm_w < RookValueMg ? SCALE_FACTOR_DRAW :
npm_b <= BishopValueMg ? 4 : 12);
if (!pos.count<PAWN>(BLACK) && npm_b - npm_w <= BishopValueMg)
e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW : npm_w <= BishopValueMg ? 4 : 12);
e->factor[BLACK] = uint8_t(npm_b < RookValueMg ? SCALE_FACTOR_DRAW :
npm_w <= BishopValueMg ? 4 : 12);
if (pos.count<PAWN>(WHITE) == 1 && npm_w - npm_b <= BishopValueMg)
e->factor[WHITE] = (uint8_t) SCALE_FACTOR_ONEPAWN;
@@ -223,25 +222,16 @@ Entry* probe(const Position& pos, Table& entries, Endgames& endgames) {
if (pos.count<PAWN>(BLACK) == 1 && npm_b - npm_w <= BishopValueMg)
e->factor[BLACK] = (uint8_t) SCALE_FACTOR_ONEPAWN;
// Compute the space weight
if (npm_w + npm_b >= 2 * QueenValueMg + 4 * RookValueMg + 2 * KnightValueMg)
{
int minorPieceCount = pos.count<KNIGHT>(WHITE) + pos.count<BISHOP>(WHITE)
+ pos.count<KNIGHT>(BLACK) + pos.count<BISHOP>(BLACK);
e->spaceWeight = make_score(minorPieceCount * minorPieceCount, 0);
}
// Evaluate the material imbalance. We use PIECE_TYPE_NONE as a place holder
// for the bishop pair "extended piece", which allows us to be more flexible
// in defining bishop pair bonuses.
const int pieceCount[COLOR_NB][PIECE_TYPE_NB] = {
const int PieceCount[COLOR_NB][PIECE_TYPE_NB] = {
{ pos.count<BISHOP>(WHITE) > 1, pos.count<PAWN>(WHITE), pos.count<KNIGHT>(WHITE),
pos.count<BISHOP>(WHITE) , pos.count<ROOK>(WHITE), pos.count<QUEEN >(WHITE) },
{ pos.count<BISHOP>(BLACK) > 1, pos.count<PAWN>(BLACK), pos.count<KNIGHT>(BLACK),
pos.count<BISHOP>(BLACK) , pos.count<ROOK>(BLACK), pos.count<QUEEN >(BLACK) } };
e->value = (int16_t)((imbalance<WHITE>(pieceCount) - imbalance<BLACK>(pieceCount)) / 16);
e->value = int16_t((imbalance<WHITE>(PieceCount) - imbalance<BLACK>(PieceCount)) / 16);
return e;
}