Update to Stockfish 15.1

This commit is contained in:
Peter Osterlund
2022-12-06 20:24:00 +01:00
parent 7be558d773
commit 10ff6f556b
29 changed files with 645 additions and 519 deletions

View File

@@ -115,8 +115,6 @@ namespace Eval {
currentEvalFileName = eval_file;
}
}
if (currentEvalFileName != eval_file)
currentEvalFileName = "";
}
/// NNUE::verify() verifies that the last net used was loaded successfully
@@ -161,7 +159,7 @@ namespace Trace {
Score scores[TERM_NB][COLOR_NB];
double to_cp(Value v) { return double(v) / PawnValueEg; }
double to_cp(Value v) { return double(v) / UCI::NormalizeToPawnValue; }
void add(int idx, Color c, Score s) {
scores[idx][c] = s;
@@ -983,7 +981,7 @@ namespace {
// Initialize score by reading the incrementally updated scores included in
// the position object (material + piece square tables) and the material
// imbalance. Score is computed internally from the white point of view.
Score score = pos.psq_score() + me->imbalance() + pos.this_thread()->trend;
Score score = pos.psq_score() + me->imbalance();
// Probe the pawn hash table
pe = Pawns::probe(pos);
@@ -1044,74 +1042,46 @@ make_v:
return v;
}
/// Fisher Random Chess: correction for cornered bishops, to fix chess960 play with NNUE
Value fix_FRC(const Position& pos) {
constexpr Bitboard Corners = 1ULL << SQ_A1 | 1ULL << SQ_H1 | 1ULL << SQ_A8 | 1ULL << SQ_H8;
if (!(pos.pieces(BISHOP) & Corners))
return VALUE_ZERO;
int correction = 0;
if ( pos.piece_on(SQ_A1) == W_BISHOP
&& pos.piece_on(SQ_B2) == W_PAWN)
correction -= CorneredBishop;
if ( pos.piece_on(SQ_H1) == W_BISHOP
&& pos.piece_on(SQ_G2) == W_PAWN)
correction -= CorneredBishop;
if ( pos.piece_on(SQ_A8) == B_BISHOP
&& pos.piece_on(SQ_B7) == B_PAWN)
correction += CorneredBishop;
if ( pos.piece_on(SQ_H8) == B_BISHOP
&& pos.piece_on(SQ_G7) == B_PAWN)
correction += CorneredBishop;
return pos.side_to_move() == WHITE ? Value(3 * correction)
: -Value(3 * correction);
}
} // namespace Eval
/// evaluate() is the evaluator for the outer world. It returns a static
/// evaluation of the position from the point of view of the side to move.
Value Eval::evaluate(const Position& pos) {
Value Eval::evaluate(const Position& pos, int* complexity) {
Value v;
bool useClassical = false;
Value psq = pos.psq_eg_stm();
// Deciding between classical and NNUE eval (~10 Elo): for high PSQ imbalance we use classical,
// but we switch to NNUE during long shuffling or with high material on the board.
if ( !useNNUE
|| ((pos.this_thread()->depth > 9 || pos.count<ALL_PIECES>() > 7) &&
abs(eg_value(pos.psq_score())) * 5 > (856 + pos.non_pawn_material() / 64) * (10 + pos.rule50_count())))
// We use the much less accurate but faster Classical eval when the NNUE
// option is set to false. Otherwise we use the NNUE eval unless the
// PSQ advantage is decisive and several pieces remain. (~3 Elo)
bool useClassical = !useNNUE || (pos.count<ALL_PIECES>() > 7 && abs(psq) > 1760);
if (useClassical)
v = Evaluation<NO_TRACE>(pos).value();
else
{
v = Evaluation<NO_TRACE>(pos).value(); // classical
useClassical = abs(v) >= 297;
}
int nnueComplexity;
int scale = 1064 + 106 * pos.non_pawn_material() / 5120;
// If result of a classical evaluation is much lower than threshold fall back to NNUE
if (useNNUE && !useClassical)
{
Value nnue = NNUE::evaluate(pos, true); // NNUE
int scale = 1036 + 22 * pos.non_pawn_material() / 1024;
Color stm = pos.side_to_move();
Value optimism = pos.this_thread()->optimism[stm];
Value psq = (stm == WHITE ? 1 : -1) * eg_value(pos.psq_score());
int complexity = 35 * abs(nnue - psq) / 256;
Color stm = pos.side_to_move();
Value optimism = pos.this_thread()->optimism[stm];
optimism = optimism * (44 + complexity) / 31;
v = (nnue + optimism) * scale / 1024 - optimism;
Value nnue = NNUE::evaluate(pos, true, &nnueComplexity);
if (pos.is_chess960())
v += fix_FRC(pos);
// Blend nnue complexity with (semi)classical complexity
nnueComplexity = ( 416 * nnueComplexity
+ 424 * abs(psq - nnue)
+ (optimism > 0 ? int(optimism) * int(psq - nnue) : 0)
) / 1024;
// Return hybrid NNUE complexity to caller
if (complexity)
*complexity = nnueComplexity;
optimism = optimism * (269 + nnueComplexity) / 256;
v = (nnue * scale + optimism * (scale - 754)) / 1024;
}
// Damp down the evaluation linearly when shuffling
@@ -1120,6 +1090,10 @@ Value Eval::evaluate(const Position& pos) {
// Guarantee evaluation does not hit the tablebase range
v = std::clamp(v, VALUE_TB_LOSS_IN_MAX_PLY + 1, VALUE_TB_WIN_IN_MAX_PLY - 1);
// When not using NNUE, return classical complexity to caller
if (complexity && (!useNNUE || useClassical))
*complexity = abs(v - psq);
return v;
}
@@ -1141,8 +1115,6 @@ std::string Eval::trace(Position& pos) {
std::memset(scores, 0, sizeof(scores));
// Reset any global variable used in eval
pos.this_thread()->depth = 0;
pos.this_thread()->trend = SCORE_ZERO;
pos.this_thread()->bestValue = VALUE_ZERO;
pos.this_thread()->optimism[WHITE] = VALUE_ZERO;
pos.this_thread()->optimism[BLACK] = VALUE_ZERO;