mirror of
https://github.com/peterosterlund2/droidfish.git
synced 2025-12-17 19:22:18 +01:00
DroidFish: Updated stockfish to version 231015.
This commit is contained in:
@@ -33,20 +33,14 @@ extern void check_time();
|
||||
|
||||
namespace {
|
||||
|
||||
// start_routine() is the C function which is called when a new thread
|
||||
// is launched. It is a wrapper to the virtual function idle_loop().
|
||||
|
||||
extern "C" { long start_routine(ThreadBase* th) { th->idle_loop(); return 0; } }
|
||||
|
||||
|
||||
// Helpers to launch a thread after creation and joining before delete. Must be
|
||||
// outside Thread c'tor and d'tor because the object must be fully initialized
|
||||
// when start_routine (and hence virtual idle_loop) is called and when joining.
|
||||
|
||||
template<typename T> T* new_thread() {
|
||||
T* th = new T();
|
||||
thread_create(th->handle, start_routine, th); // Will go to sleep
|
||||
return th;
|
||||
std::thread* th = new T;
|
||||
*th = std::thread(&T::idle_loop, (T*)th); // Will go to sleep
|
||||
return (T*)th;
|
||||
}
|
||||
|
||||
void delete_thread(ThreadBase* th) {
|
||||
@@ -56,7 +50,7 @@ namespace {
|
||||
th->mutex.unlock();
|
||||
|
||||
th->notify_one();
|
||||
thread_join(th->handle); // Wait for thread termination
|
||||
th->join(); // Wait for thread termination
|
||||
delete th;
|
||||
}
|
||||
|
||||
@@ -67,19 +61,26 @@ namespace {
|
||||
|
||||
void ThreadBase::notify_one() {
|
||||
|
||||
mutex.lock();
|
||||
std::unique_lock<Mutex> lk(mutex);
|
||||
sleepCondition.notify_one();
|
||||
mutex.unlock();
|
||||
}
|
||||
|
||||
|
||||
// ThreadBase::wait_for() set the thread to sleep until 'condition' turns true
|
||||
// ThreadBase::wait() set the thread to sleep until 'condition' turns true
|
||||
|
||||
void ThreadBase::wait_for(volatile const bool& condition) {
|
||||
void ThreadBase::wait(volatile const bool& condition) {
|
||||
|
||||
mutex.lock();
|
||||
while (!condition) sleepCondition.wait(mutex);
|
||||
mutex.unlock();
|
||||
std::unique_lock<Mutex> lk(mutex);
|
||||
sleepCondition.wait(lk, [&]{ return condition; });
|
||||
}
|
||||
|
||||
|
||||
// ThreadBase::wait_while() set the thread to sleep until 'condition' turns false
|
||||
|
||||
void ThreadBase::wait_while(volatile const bool& condition) {
|
||||
|
||||
std::unique_lock<Mutex> lk(mutex);
|
||||
sleepCondition.wait(lk, [&]{ return !condition; });
|
||||
}
|
||||
|
||||
|
||||
@@ -89,141 +90,11 @@ void ThreadBase::wait_for(volatile const bool& condition) {
|
||||
Thread::Thread() /* : splitPoints() */ { // Initialization of non POD broken in MSVC
|
||||
|
||||
searching = false;
|
||||
maxPly = splitPointsSize = 0;
|
||||
activeSplitPoint = NULL;
|
||||
activePosition = NULL;
|
||||
maxPly = 0;
|
||||
idx = Threads.size(); // Starts from 0
|
||||
}
|
||||
|
||||
|
||||
// Thread::cutoff_occurred() checks whether a beta cutoff has occurred in the
|
||||
// current active split point, or in some ancestor of the split point.
|
||||
|
||||
bool Thread::cutoff_occurred() const {
|
||||
|
||||
for (SplitPoint* sp = activeSplitPoint; sp; sp = sp->parentSplitPoint)
|
||||
if (sp->cutoff)
|
||||
return true;
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
|
||||
// Thread::available_to() checks whether the thread is available to help the
|
||||
// thread 'master' at a split point. An obvious requirement is that thread must
|
||||
// be idle. With more than two threads, this is not sufficient: If the thread is
|
||||
// the master of some split point, it is only available as a slave to the slaves
|
||||
// which are busy searching the split point at the top of slave's split point
|
||||
// stack (the "helpful master concept" in YBWC terminology).
|
||||
|
||||
bool Thread::available_to(const Thread* master) const {
|
||||
|
||||
if (searching)
|
||||
return false;
|
||||
|
||||
// Make a local copy to be sure it doesn't become zero under our feet while
|
||||
// testing next condition and so leading to an out of bounds access.
|
||||
const int size = splitPointsSize;
|
||||
|
||||
// No split points means that the thread is available as a slave for any
|
||||
// other thread otherwise apply the "helpful master" concept if possible.
|
||||
return !size || splitPoints[size - 1].slavesMask.test(master->idx);
|
||||
}
|
||||
|
||||
|
||||
// Thread::split() does the actual work of distributing the work at a node between
|
||||
// several available threads. If it does not succeed in splitting the node
|
||||
// (because no idle threads are available), the function immediately returns.
|
||||
// If splitting is possible, a SplitPoint object is initialized with all the
|
||||
// data that must be copied to the helper threads and then helper threads are
|
||||
// informed that they have been assigned work. This will cause them to instantly
|
||||
// leave their idle loops and call search(). When all threads have returned from
|
||||
// search() then split() returns.
|
||||
|
||||
void Thread::split(Position& pos, Stack* ss, Value alpha, Value beta, Value* bestValue,
|
||||
Move* bestMove, Depth depth, int moveCount,
|
||||
MovePicker* movePicker, int nodeType, bool cutNode) {
|
||||
|
||||
assert(searching);
|
||||
assert(-VALUE_INFINITE < *bestValue && *bestValue <= alpha && alpha < beta && beta <= VALUE_INFINITE);
|
||||
assert(depth >= Threads.minimumSplitDepth);
|
||||
assert(splitPointsSize < MAX_SPLITPOINTS_PER_THREAD);
|
||||
|
||||
// Pick and init the next available split point
|
||||
SplitPoint& sp = splitPoints[splitPointsSize];
|
||||
|
||||
sp.masterThread = this;
|
||||
sp.parentSplitPoint = activeSplitPoint;
|
||||
sp.slavesMask = 0, sp.slavesMask.set(idx);
|
||||
sp.depth = depth;
|
||||
sp.bestValue = *bestValue;
|
||||
sp.bestMove = *bestMove;
|
||||
sp.alpha = alpha;
|
||||
sp.beta = beta;
|
||||
sp.nodeType = nodeType;
|
||||
sp.cutNode = cutNode;
|
||||
sp.movePicker = movePicker;
|
||||
sp.moveCount = moveCount;
|
||||
sp.pos = &pos;
|
||||
sp.nodes = 0;
|
||||
sp.cutoff = false;
|
||||
sp.ss = ss;
|
||||
|
||||
// Try to allocate available threads and ask them to start searching setting
|
||||
// 'searching' flag. This must be done under lock protection to avoid concurrent
|
||||
// allocation of the same slave by another master.
|
||||
Threads.mutex.lock();
|
||||
sp.mutex.lock();
|
||||
|
||||
sp.allSlavesSearching = true; // Must be set under lock protection
|
||||
++splitPointsSize;
|
||||
activeSplitPoint = &sp;
|
||||
activePosition = NULL;
|
||||
|
||||
Thread* slave;
|
||||
|
||||
while ((slave = Threads.available_slave(this)) != NULL)
|
||||
{
|
||||
sp.slavesMask.set(slave->idx);
|
||||
slave->activeSplitPoint = &sp;
|
||||
slave->searching = true; // Slave leaves idle_loop()
|
||||
slave->notify_one(); // Could be sleeping
|
||||
}
|
||||
|
||||
// Everything is set up. The master thread enters the idle loop, from which
|
||||
// it will instantly launch a search, because its 'searching' flag is set.
|
||||
// The thread will return from the idle loop when all slaves have finished
|
||||
// their work at this split point.
|
||||
sp.mutex.unlock();
|
||||
Threads.mutex.unlock();
|
||||
|
||||
Thread::idle_loop(); // Force a call to base class idle_loop()
|
||||
|
||||
// In the helpful master concept, a master can help only a sub-tree of its
|
||||
// split point and because everything is finished here, it's not possible
|
||||
// for the master to be booked.
|
||||
assert(!searching);
|
||||
assert(!activePosition);
|
||||
|
||||
// We have returned from the idle loop, which means that all threads are
|
||||
// finished. Note that setting 'searching' and decreasing splitPointsSize must
|
||||
// be done under lock protection to avoid a race with Thread::available_to().
|
||||
Threads.mutex.lock();
|
||||
sp.mutex.lock();
|
||||
|
||||
searching = true;
|
||||
--splitPointsSize;
|
||||
activeSplitPoint = sp.parentSplitPoint;
|
||||
activePosition = &pos;
|
||||
pos.set_nodes_searched(pos.nodes_searched() + sp.nodes);
|
||||
*bestMove = sp.bestMove;
|
||||
*bestValue = sp.bestValue;
|
||||
|
||||
sp.mutex.unlock();
|
||||
Threads.mutex.unlock();
|
||||
}
|
||||
|
||||
|
||||
// TimerThread::idle_loop() is where the timer thread waits Resolution milliseconds
|
||||
// and then calls check_time(). When not searching, thread sleeps until it's woken up.
|
||||
|
||||
@@ -231,19 +102,38 @@ void TimerThread::idle_loop() {
|
||||
|
||||
while (!exit)
|
||||
{
|
||||
mutex.lock();
|
||||
std::unique_lock<Mutex> lk(mutex);
|
||||
|
||||
if (!exit)
|
||||
sleepCondition.wait_for(mutex, run ? Resolution : INT_MAX);
|
||||
sleepCondition.wait_for(lk, std::chrono::milliseconds(run ? Resolution : INT_MAX));
|
||||
|
||||
mutex.unlock();
|
||||
lk.unlock();
|
||||
|
||||
if (run)
|
||||
if (!exit && run)
|
||||
check_time();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// Thread::idle_loop() is where the thread is parked when it has no work to do
|
||||
|
||||
void Thread::idle_loop() {
|
||||
|
||||
while (!exit)
|
||||
{
|
||||
std::unique_lock<Mutex> lk(mutex);
|
||||
|
||||
while (!searching && !exit)
|
||||
sleepCondition.wait(lk);
|
||||
|
||||
lk.unlock();
|
||||
|
||||
if (!exit && searching)
|
||||
search();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// MainThread::idle_loop() is where the main thread is parked waiting to be started
|
||||
// when there is a new search. The main thread will launch all the slave threads.
|
||||
|
||||
@@ -251,32 +141,33 @@ void MainThread::idle_loop() {
|
||||
|
||||
while (!exit)
|
||||
{
|
||||
mutex.lock();
|
||||
std::unique_lock<Mutex> lk(mutex);
|
||||
|
||||
thinking = false;
|
||||
|
||||
while (!thinking && !exit)
|
||||
{
|
||||
Threads.sleepCondition.notify_one(); // Wake up the UI thread if needed
|
||||
sleepCondition.wait(mutex);
|
||||
sleepCondition.notify_one(); // Wake up the UI thread if needed
|
||||
sleepCondition.wait(lk);
|
||||
}
|
||||
|
||||
mutex.unlock();
|
||||
lk.unlock();
|
||||
|
||||
if (!exit)
|
||||
{
|
||||
searching = true;
|
||||
|
||||
Search::think();
|
||||
|
||||
assert(searching);
|
||||
|
||||
searching = false;
|
||||
}
|
||||
think();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// MainThread::join() waits for main thread to finish thinking
|
||||
|
||||
void MainThread::join() {
|
||||
|
||||
std::unique_lock<Mutex> lk(mutex);
|
||||
sleepCondition.wait(lk, [&]{ return !thinking; });
|
||||
}
|
||||
|
||||
|
||||
// ThreadPool::init() is called at startup to create and launch requested threads,
|
||||
// that will go immediately to sleep. We cannot use a c'tor because Threads is a
|
||||
// static object and we need a fully initialized engine at this point due to
|
||||
@@ -296,9 +187,12 @@ void ThreadPool::init() {
|
||||
void ThreadPool::exit() {
|
||||
|
||||
delete_thread(timer); // As first because check_time() accesses threads data
|
||||
timer = nullptr;
|
||||
|
||||
for (iterator it = begin(); it != end(); ++it)
|
||||
delete_thread(*it);
|
||||
for (Thread* th : *this)
|
||||
delete_thread(th);
|
||||
|
||||
clear(); // Get rid of stale pointers
|
||||
}
|
||||
|
||||
|
||||
@@ -310,15 +204,10 @@ void ThreadPool::exit() {
|
||||
|
||||
void ThreadPool::read_uci_options() {
|
||||
|
||||
minimumSplitDepth = Options["Min Split Depth"] * ONE_PLY;
|
||||
size_t requested = Options["Threads"];
|
||||
|
||||
assert(requested > 0);
|
||||
|
||||
// If zero (default) then set best minimum split depth automatically
|
||||
if (!minimumSplitDepth)
|
||||
minimumSplitDepth = requested < 8 ? 4 * ONE_PLY : 7 * ONE_PLY;
|
||||
|
||||
while (size() < requested)
|
||||
push_back(new_thread<Thread>());
|
||||
|
||||
@@ -330,27 +219,14 @@ void ThreadPool::read_uci_options() {
|
||||
}
|
||||
|
||||
|
||||
// ThreadPool::available_slave() tries to find an idle thread which is available
|
||||
// as a slave for the thread 'master'.
|
||||
// ThreadPool::nodes_searched() returns the number of nodes searched
|
||||
|
||||
Thread* ThreadPool::available_slave(const Thread* master) const {
|
||||
int64_t ThreadPool::nodes_searched() {
|
||||
|
||||
for (const_iterator it = begin(); it != end(); ++it)
|
||||
if ((*it)->available_to(master))
|
||||
return *it;
|
||||
|
||||
return NULL;
|
||||
}
|
||||
|
||||
|
||||
// ThreadPool::wait_for_think_finished() waits for main thread to finish the search
|
||||
|
||||
void ThreadPool::wait_for_think_finished() {
|
||||
|
||||
MainThread* th = main();
|
||||
th->mutex.lock();
|
||||
while (th->thinking) sleepCondition.wait(th->mutex);
|
||||
th->mutex.unlock();
|
||||
int64_t nodes = 0;
|
||||
for (Thread *th : *this)
|
||||
nodes += th->rootPos.nodes_searched();
|
||||
return nodes;
|
||||
}
|
||||
|
||||
|
||||
@@ -359,27 +235,25 @@ void ThreadPool::wait_for_think_finished() {
|
||||
|
||||
void ThreadPool::start_thinking(const Position& pos, const LimitsType& limits,
|
||||
StateStackPtr& states) {
|
||||
wait_for_think_finished();
|
||||
|
||||
SearchTime = Time::now(); // As early as possible
|
||||
main()->join();
|
||||
|
||||
Signals.stopOnPonderhit = Signals.firstRootMove = false;
|
||||
Signals.stop = Signals.failedLowAtRoot = false;
|
||||
|
||||
RootMoves.clear();
|
||||
RootPos = pos;
|
||||
main()->rootMoves.clear();
|
||||
main()->rootPos = pos;
|
||||
Limits = limits;
|
||||
if (states.get()) // If we don't set a new position, preserve current state
|
||||
{
|
||||
SetupStates = states; // Ownership transfer here
|
||||
SetupStates = std::move(states); // Ownership transfer here
|
||||
assert(!states.get());
|
||||
}
|
||||
|
||||
for (MoveList<LEGAL> it(pos); *it; ++it)
|
||||
for (const auto& m : MoveList<LEGAL>(pos))
|
||||
if ( limits.searchmoves.empty()
|
||||
|| std::count(limits.searchmoves.begin(), limits.searchmoves.end(), *it))
|
||||
RootMoves.push_back(RootMove(*it));
|
||||
|| std::count(limits.searchmoves.begin(), limits.searchmoves.end(), m))
|
||||
main()->rootMoves.push_back(RootMove(m));
|
||||
|
||||
main()->thinking = true;
|
||||
main()->notify_one(); // Starts main thread
|
||||
main()->notify_one(); // Wake up main thread: 'thinking' must be already set
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user